Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study

病危 医学 重症监护医学 疾病 急性肾损伤 肾脏疾病 互联网 内科学 计算机科学 万维网
作者
Mingxia Li,Shuzhe Han,Fang Liang,Chenghuan Hu,Buyao Zhang,Qinlan Hou,Shuangping Zhao
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e51354-e51354 被引量:21
标识
DOI:10.2196/51354
摘要

Background Acute kidney disease (AKD) affects more than half of critically ill elderly patients with acute kidney injury (AKI), which leads to worse short-term outcomes. Objective We aimed to establish 2 machine learning models to predict the risk and prognosis of AKD in the elderly and to deploy the models as online apps. Methods Data on elderly patients with AKI (n=3542) and AKD (n=2661) from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were used to develop 2 models for predicting the AKD risk and in-hospital mortality, respectively. Data collected from Xiangya Hospital of Central South University were for external validation. A bootstrap method was used for internal validation to obtain relatively stable results. We extracted the indicators within 24 hours of the first diagnosis of AKI and the fluctuation range of some indicators, namely delta (day 3 after AKI minus day 1), as features. Six machine learning algorithms were used for modeling; the area under the receiver operating characteristic curve (AUROC), decision curve analysis, and calibration curve for evaluating; Shapley additive explanation (SHAP) analysis for visually interpreting; and the Heroku platform for deploying the best-performing models as web-based apps. Results For the model of predicting the risk of AKD in elderly patients with AKI during hospitalization, the Light Gradient Boosting Machine (LightGBM) showed the best overall performance in the training (AUROC=0.844, 95% CI 0.831-0.857), internal validation (AUROC=0.853, 95% CI 0.841-0.865), and external (AUROC=0.755, 95% CI 0.699–0.811) cohorts. In addition, LightGBM performed well for the AKD prognostic prediction in the training (AUROC=0.861, 95% CI 0.843-0.878), internal validation (AUROC=0.868, 95% CI 0.851-0.885), and external (AUROC=0.746, 95% CI 0.673-0.820) cohorts. The models deployed as online prediction apps allowed users to predict and provide feedback to submit new data for model iteration. In the importance ranking and correlation visualization of the model’s top 10 influencing factors conducted based on the SHAP value, partial dependence plots revealed the optimal cutoff of some interventionable indicators. The top 5 factors predicting the risk of AKD were creatinine on day 3, sepsis, delta blood urea nitrogen (BUN), diastolic blood pressure (DBP), and heart rate, while the top 5 factors determining in-hospital mortality were age, BUN on day 1, vasopressor use, BUN on day 3, and partial pressure of carbon dioxide (PaCO2). Conclusions We developed and validated 2 online apps for predicting the risk of AKD and its prognostic mortality in elderly patients, respectively. The top 10 factors that influenced the AKD risk and mortality during hospitalization were identified and explained visually, which might provide useful applications for intelligent management and suggestions for future prospective research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TUTU完成签到 ,获得积分10
1秒前
看文献完成签到,获得积分10
4秒前
饱满芷卉完成签到,获得积分10
6秒前
科研小趴菜完成签到 ,获得积分10
8秒前
pupu完成签到 ,获得积分10
10秒前
害怕的冰颜完成签到 ,获得积分10
11秒前
hhh123完成签到,获得积分10
12秒前
广广广渠路完成签到,获得积分10
13秒前
hambur完成签到,获得积分10
16秒前
梅特卡夫完成签到,获得积分10
16秒前
tigger完成签到,获得积分10
17秒前
永不言弃完成签到 ,获得积分0
21秒前
莎莎完成签到 ,获得积分10
21秒前
阜睿完成签到 ,获得积分0
21秒前
科目三应助Gaopkid采纳,获得10
25秒前
歪比巴卜完成签到 ,获得积分20
27秒前
kumarr完成签到,获得积分10
28秒前
ll完成签到 ,获得积分10
30秒前
biozy完成签到,获得积分10
30秒前
想发一篇贾克斯完成签到,获得积分10
32秒前
龚瑶完成签到 ,获得积分10
32秒前
34秒前
CHANG完成签到 ,获得积分10
35秒前
xyzlancet完成签到,获得积分10
36秒前
38秒前
ji发布了新的文献求助10
39秒前
sdbz001完成签到,获得积分0
39秒前
jeronimo完成签到,获得积分10
39秒前
40秒前
Gaopkid完成签到,获得积分10
41秒前
41秒前
李y梅子完成签到 ,获得积分10
41秒前
让我再眯一会儿完成签到 ,获得积分10
41秒前
43秒前
灵巧如凡完成签到 ,获得积分10
43秒前
GQL完成签到,获得积分10
44秒前
Gaopkid发布了新的文献求助10
45秒前
田博妍发布了新的文献求助30
45秒前
gaozengxiang完成签到,获得积分10
49秒前
情怀应助ji采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590684
求助须知:如何正确求助?哪些是违规求助? 4676645
关于积分的说明 14795589
捐赠科研通 4635135
什么是DOI,文献DOI怎么找? 2532912
邀请新用户注册赠送积分活动 1501375
关于科研通互助平台的介绍 1468806