依维莫司
加压器
三阴性乳腺癌
PI3K/AKT/mTOR通路
医学
抑制因子
下调和上调
乳腺癌
癌症
癌症研究
内科学
肿瘤进展
化学
生物
细胞生物学
信号转导
转录因子
基因
生物化学
作者
Min-Ying Huang,Shu‐Yuan Hu,Jia Dong,Ling Deng,Lisa Andriani,Xiao-Yan Ma,Yin-Ling Zhang,Fang-Lin Zhang,Zhi‐Ming Shao,Da‐Qiang Li
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2024-05-15
卷期号:84 (16): 2660-2673
标识
DOI:10.1158/0008-5472.can-23-2781
摘要
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Transcriptional dysregulation is a hallmark of cancer, and several transcriptional regulators have been demonstrated to contribute to cancer progression. In this study, we identified an upregulation of the transcriptional corepressor downregulator of transcription 1-associated protein 1 (DRAP1) in TNBC, which was closely associated with poor recurrence-free survival in patients with TNBC. DRAP1 promoted TNBC proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, the downregulator of transcription 1 (DR1)/DRAP1 heterodimer complex inhibited expression of the cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1) and thereby increased activation of mTOR, which sensitized TNBC to treatment with the mTOR inhibitor everolimus. DRAP1 and DR1 also formed a positive feedback loop. DRAP1 enhanced the stability of DR1 by recruiting the deubiquitinase USP7 to inhibit its proteasomal degradation; in turn, DR1 directly promoted DRAP1 transcription. Collectively, this study uncovered a DRAP1-DR1 bidirectional regulatory pathway that promotes TNBC progression, suggesting that targeting the DRAP1/DR1 complex might be a potential therapeutic strategy to treat TNBC. Significance: DR1 and DRAP1 form a positive feedback loop and a repressor complex to cooperatively inhibit cytosolic arginine sensor for mTORC1 subunit 1 transcription and stimulate mTOR signaling, leading to progression and increased everolimus sensitivity in triple-negative breast cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI