Improved multi-layer wavelet transform and blind source separation based ECG artifacts removal algorithm from the sEMG signal: in the case of upper limbs

盲信号分离 模式识别(心理学) 信号(编程语言) 算法 计算机科学 小波 人工智能 小波变换 分离(统计) 语音识别 电信 频道(广播) 机器学习 程序设计语言
作者
Wei Lü,Dongliang Gong,Xue Xue,Lifu Gao
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:12: 1367929-1367929 被引量:9
标识
DOI:10.3389/fbioe.2024.1367929
摘要

Introduction: Surface electromyogram (sEMG) signals have been widely used in human upper limb force estimation and motion intention recognition. However, the electrocardiogram(ECG) artifact generated by the beating of the heart is a major factor that reduces the quality of the EMG signal when recording the sEMG signal from the muscle close to the heart. sEMG signals contaminated by ECG artifacts are difficult to be understood correctly. The objective of this paper is to effectively remove ECG artifacts from sEMG signals by a novel method. Methods: In this paper, sEMG and ECG signals of the biceps brachii, brachialis, and triceps muscle of the human upper limb will be collected respectively. Firstly, an improved multi-layer wavelet transform algorithm is used to preprocess the raw sEMG signal to remove the background noise and power frequency interference in the raw signal. Then, based on the theory of blind source separation analysis, an improved Fast-ICA algorithm was constructed to separate the denoising signals. Finally, an ECG discrimination algorithm was used to find and eliminate ECG signals in sEMG signals. This method consists of the following steps: 1) Acquisition of raw sEMG and ECG signals; 2) Decoupling the raw sEMG signal; 3) Fast-ICA-based signal component separation; 4) ECG artifact recognition and elimination. Results and discussion: The experimental results show that our method has a good effect on removing ECG artifacts from contaminated EMG signals. It can further improve the quality of EMG signals, which is of great significance for improving the accuracy of force estimation and motion intention recognition tasks. Compared with other state-of-the-art methods, our method can also provide the guiding significance for other biological signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的姿完成签到,获得积分10
1秒前
jellorio发布了新的文献求助10
1秒前
Yianyan完成签到,获得积分20
3秒前
月亮与六便士完成签到,获得积分10
3秒前
Lily完成签到,获得积分10
4秒前
李健的小迷弟应助陈智贤采纳,获得10
4秒前
92小小白完成签到,获得积分10
5秒前
Zx_1993应助初之采纳,获得20
6秒前
JamesPei应助啦啦啦啦啦采纳,获得10
9秒前
领导范儿应助miaojiakun采纳,获得30
9秒前
tomato完成签到,获得积分10
10秒前
科目三应助小巧初蓝采纳,获得10
10秒前
天冬发布了新的文献求助10
10秒前
小蘑菇应助陈永伟采纳,获得10
11秒前
陈梦鼠完成签到,获得积分10
12秒前
splaker7完成签到,获得积分10
12秒前
Yili完成签到,获得积分20
12秒前
大聪明完成签到,获得积分10
13秒前
隐形的宝宝完成签到,获得积分10
13秒前
嗯嗯完成签到 ,获得积分10
15秒前
刘shuchang完成签到 ,获得积分10
15秒前
15秒前
15秒前
15秒前
博伦llll完成签到,获得积分20
16秒前
17秒前
子车钧完成签到,获得积分20
17秒前
Hello应助Sijie采纳,获得10
18秒前
Yili发布了新的文献求助10
18秒前
FashionBoy应助廾匸采纳,获得10
18秒前
大聪明发布了新的文献求助10
18秒前
18秒前
Lily发布了新的文献求助10
19秒前
洁净的天思完成签到,获得积分10
19秒前
广广发布了新的文献求助10
19秒前
19秒前
博伦llll发布了新的文献求助10
22秒前
24秒前
24秒前
天涯明月刀完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5170420
求助须知:如何正确求助?哪些是违规求助? 4361183
关于积分的说明 13578837
捐赠科研通 4208380
什么是DOI,文献DOI怎么找? 2308143
邀请新用户注册赠送积分活动 1307537
关于科研通互助平台的介绍 1254343