Deep Reinforcement Learning-Based Feature Extraction and Encoding for Finger-Vein Verification

计算机科学 人工智能 强化学习 特征提取 模式识别(心理学) 卷积神经网络 深度学习 特征学习 生物识别 编码(内存) 特征(语言学) 哲学 语言学
作者
Yantao Li,Chao Fan,Huafeng Qin,Shaojiang Deng,Mounîm A. El‐Yacoubi,Gang Zhou
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tetci.2024.3398022
摘要

Finger-vein biometrics has attracted significant attention in recent years, posing a challenge in extracting robust finger-vein patterns from raw images with limited prior knowledge. While deep learning-based models, particularly convolutional neural network (CNN)-based methods, exhibit substantial capacity for feature representation, they still suffer from certain drawbacks. First, CNN-based models focus on learning internal feature representations by minimizing the loss function of the reconstruction error. However, this strategy may lack optimal exploration of the parameter space, resulting in limited performance. Second, existing deep learning-based feature extraction approaches encode vein textures based on an output threshold of 0.5, potentially causing the omission of discriminant vein patterns. To address these drawbacks, we propose DRL-FEE, a Deep Reinforcement Learning-based Feature Extraction and Encoding for finger-vein verification in this paper. DRL-FEE comprises a DRL-based feature extraction approach for vein texture extraction and a DRL-based supervised encoding approach for vein feature encoding. Specifically, we design a CNN model incorporated into an RL framework to establish a DRL-based segmentation model vein feature extraction, utilizing the CNN to generate a policy for feature extraction. To further enhance performance, we develop a DRL-based supervised encoding approach with a transformer-based controller to search for an optimal threshold for vein feature encoding. The experimental results on three public finger-vein databases demonstrate that the proposed DRL-FEE outperforms state-of-the-art solutions, achieving the lowest verification errors with EERs of 3.13%, 2.86%, and 1.66%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
憨坨发布了新的文献求助10
刚刚
刚刚
wrx发布了新的文献求助10
1秒前
1秒前
辉辉发布了新的文献求助50
2秒前
2秒前
零零二完成签到 ,获得积分10
2秒前
3秒前
李健应助采花大盗采纳,获得10
4秒前
evenD完成签到,获得积分10
4秒前
但大图发布了新的文献求助10
4秒前
sugarmei完成签到,获得积分10
5秒前
方脸怪完成签到,获得积分10
5秒前
5秒前
完美世界应助科研通管家采纳,获得20
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
7秒前
123y应助科研通管家采纳,获得10
7秒前
甜甜玫瑰应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
8秒前
所所应助科研通管家采纳,获得20
8秒前
8秒前
YY完成签到,获得积分10
8秒前
和谐的火龙果完成签到,获得积分10
9秒前
shw完成签到,获得积分10
9秒前
情怀应助悲凉的初翠采纳,获得10
9秒前
11秒前
12秒前
13秒前
gwb发布了新的文献求助10
13秒前
朴素的凡梦完成签到,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110279
求助须知:如何正确求助?哪些是违规求助? 3648651
关于积分的说明 11557058
捐赠科研通 3354134
什么是DOI,文献DOI怎么找? 1842769
邀请新用户注册赠送积分活动 908949
科研通“疑难数据库(出版商)”最低求助积分说明 825846