Predicting autism traits from baby wellness records: A machine learning approach

自闭症 心理学 心理干预 自闭症谱系障碍 发展心理学 精神科
作者
Ayelet Ben‐Sasson,Joshua Guedalia,Keren Ilan,Meirav Shaham,Galit Shefer,Roe Cohen,Yuval Tamir,Lidia V. Gabis
出处
期刊:Autism [SAGE Publishing]
卷期号:28 (12): 3063-3077 被引量:1
标识
DOI:10.1177/13623613241253311
摘要

Timely identification of autism spectrum conditions is a necessity to enable children to receive the most benefit from early interventions. Emerging technological advancements provide avenues for detecting subtle, early indicators of autism from routinely collected health information. This study tested a model that provides a likelihood score for autism diagnosis from baby wellness visit records collected during the first 2 years of life. It included records of 591,989 non-autistic children and 12,846 children with autism. The model identified two-thirds of the autism spectrum condition group (boys 63% and girls 66%). Sex-specific models had several predictive features in common. These included language development, fine motor skills, and social milestones from visits at 12-24 months, mother's age, and lower initial growth but higher last growth measurements. Parental concerns about development or hearing impairment were other predictors. The models differed in other growth measurements and birth parameters. These models can support the detection of early signs of autism in girls and boys by using information routinely recorded during the first 2 years of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莽哥发布了新的文献求助10
1秒前
2秒前
CHANL完成签到,获得积分10
2秒前
2秒前
细心觅风完成签到,获得积分10
3秒前
cainiao发布了新的文献求助10
3秒前
sleepingfish应助Dandy采纳,获得20
4秒前
Tiger完成签到,获得积分10
4秒前
斯文败类应助QAQ采纳,获得10
4秒前
丰富如南完成签到,获得积分10
5秒前
希希发布了新的文献求助10
6秒前
7秒前
烂漫猫咪发布了新的文献求助10
9秒前
wzz完成签到,获得积分10
9秒前
研友_8Kedgn发布了新的文献求助10
10秒前
失眠的访枫完成签到 ,获得积分10
10秒前
10秒前
10秒前
12秒前
miaomiao123完成签到 ,获得积分10
12秒前
明芬发布了新的文献求助10
13秒前
mingbuta完成签到,获得积分10
13秒前
aidiresi完成签到,获得积分10
14秒前
Deanna发布了新的文献求助10
15秒前
芒go完成签到,获得积分10
16秒前
刘乐艺完成签到,获得积分10
16秒前
fighting应助科研通管家采纳,获得10
16秒前
jelly10应助科研通管家采纳,获得20
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
jelly10应助科研通管家采纳,获得30
17秒前
核桃应助科研通管家采纳,获得30
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
CHEIYEON发布了新的文献求助10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429