亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics-Based Analysis of Intestinal Ultrasound Images for Inflammatory Bowel Disease: A Feasibility Study

无线电技术 医学 炎症性肠病 超声波 放射科 疾病 内科学
作者
Phillip Gu,Jui-Hsuan Chang,Dan Carter,Dermot McGovern,Jason H. Moore,Paul Wang,Xiuzhen Huang
出处
期刊:Crohn's & colitis 360 [Oxford University Press]
卷期号:6 (2): otae034-otae034 被引量:12
标识
DOI:10.1093/crocol/otae034
摘要

Abstract Background The increasing adoption of intestinal ultrasound (IUS) for monitoring inflammatory bowel diseases (IBD) by IBD providers has uncovered new challenges regarding standardized image interpretation and limitations as a research tool. Artificial intelligence approaches can help address these challenges. We aim to determine the feasibility of radiomic analysis of IUS images and to determine if a radiomics-based classification model can accurately differentiate between normal and abnormal IUS images. We will also compare the radiomic-based model’s performance to a convolutional neural network (CNN)-based classification model to understand which method is more effective for extracting meaningful information from IUS images. Methods Retrospectively analyzing IUS images obtained during routine outpatient visits, we developed and tested radiomic-based and CNN-based models to distinguish between normal and abnormal images, with abnormal images defined as bowel wall thickness > 3 mm or bowel hyperemia with modified Limberg score ≥ 1 (both are surrogate markers for inflammation). Model performances were measured by area under the receiver operator curve (AUC). Results For this feasibility study, 125 images (33% abnormal) were analyzed. A radiomic-based model using XG boost yielded the best classifier model with average test AUC 0.98%, 93.8% sensitivity, 93.8% specificity, and 93.7% accuracy. The CNN-based classification model yielded an average testing AUC of 0.75. Conclusions Radiomic analysis of IUS images is feasible, and a radiomic-based classification model could accurately differentiate abnormal from normal images. Our findings establish methods to facilitate future radiomic-based IUS studies that can help standardize image interpretation and expand IUS research capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
17秒前
一盏壶完成签到,获得积分10
21秒前
24秒前
26秒前
新xin发布了新的文献求助30
30秒前
CipherSage应助Zert采纳,获得10
36秒前
40秒前
42秒前
贝贝猫完成签到 ,获得积分10
46秒前
Zert发布了新的文献求助10
48秒前
58秒前
新xin完成签到,获得积分10
1分钟前
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得20
1分钟前
1分钟前
爱做实验的泡利完成签到,获得积分10
1分钟前
1分钟前
mengzhe完成签到,获得积分10
2分钟前
2分钟前
Jean发布了新的文献求助10
2分钟前
美美发布了新的文献求助10
2分钟前
3分钟前
蔡浩天发布了新的文献求助10
3分钟前
小马甲应助Fishchips采纳,获得10
3分钟前
希望天下0贩的0应助Zert采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Fishchips发布了新的文献求助10
3分钟前
3分钟前
Zert发布了新的文献求助10
3分钟前
Jasper应助蔡浩天采纳,获得10
3分钟前
3分钟前
无花果应助Zert采纳,获得10
4分钟前
5分钟前
Takahara2000应助科研通管家采纳,获得10
5分钟前
Zert发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346420
求助须知:如何正确求助?哪些是违规求助? 4481037
关于积分的说明 13947151
捐赠科研通 4378821
什么是DOI,文献DOI怎么找? 2406067
邀请新用户注册赠送积分活动 1398653
关于科研通互助平台的介绍 1371340