Demand-Side Regulation Provision of Virtual Power Plants Consisting of Interconnected Microgrids Through Double-Stage Double-Layer Optimization

微电网 需求响应 调度(生产过程) 整数规划 计算机科学 虚拟发电厂 可再生能源 线性规划 电力市场 网格 数学优化 可靠性工程 工程类 分布式发电 运营管理 电气工程 几何学 数学 算法
作者
Jiaqi Liu,Shenglong Yu,Hongji Hu,Junbo Zhao,Hieu Trinh
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 1946-1957 被引量:15
标识
DOI:10.1109/tsg.2022.3203466
摘要

This study proposes a double-stage double-layer optimization model for a virtual power plant (VPP) consisting of interconnected microgrids (IMGs) with integrated renewable energy sources (RESs) and energy storage systems (ESSs) to realize demand-side ancillary service, considering intra energy sharing among the IMGs within the VPP. In particular, the first stage, day-ahead scheduling, is carried out to predict the hourly electricity consumption baseline and regulation capacity for the next day, the latter of which results in a reward from the market operator. In the second stage, real-time power consumption control is performed by following the dynamic regulation (or RegD) signal. The second stage is further divided into two layers: the upper layer distributes demand response (DR) signals from the main grid according to the electricity unit price of each microgrid (MG) and exchanges electricity among MGs based on a new energy sharing mechanism to reduce RegD-following violations. The lower layer performs real-time power consumption control for each MG to minimize operation costs. The overall goal is to maximize the reward in the day-ahead stage and minimize the RegD-following violation penalty in the real-time stage, so as to minimize the overall operation cost of the VPP. The optimization is written in five objective functions, which are solved using mixed integer linear programming (MILP) in Gurobi solvers. Extensive simulation and comparison studies are carried out, and numerical results show that compared with traditional MG operations, VPPs comprised of IMGs can reduce operation costs and provide better frequency support for the grid through superior RegD signal following performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小宋应助包容的千兰采纳,获得10
1秒前
lifeng发布了新的文献求助10
4秒前
谨慎傲旋完成签到 ,获得积分10
4秒前
Summer发布了新的文献求助30
5秒前
科研通AI5应助song采纳,获得10
7秒前
jjwen完成签到,获得积分10
7秒前
Owen应助dddd采纳,获得10
8秒前
HEHNJJ完成签到,获得积分10
13秒前
从容的雨灵完成签到,获得积分10
13秒前
迷人面包完成签到,获得积分10
13秒前
14秒前
15秒前
可爱败关注了科研通微信公众号
16秒前
16秒前
haimianbaobao完成签到 ,获得积分10
16秒前
酷波er应助土豆烤肉采纳,获得10
18秒前
iNk应助猛犸象冲冲冲采纳,获得10
18秒前
Autin完成签到,获得积分0
19秒前
mariawang发布了新的文献求助10
19秒前
王旭东完成签到 ,获得积分10
20秒前
运敬完成签到 ,获得积分10
21秒前
25秒前
乔乔完成签到,获得积分10
25秒前
26秒前
归尘发布了新的文献求助10
27秒前
27秒前
上官若男应助geather采纳,获得10
28秒前
拾柒完成签到,获得积分10
29秒前
刻苦如豹发布了新的文献求助10
29秒前
离线完成签到 ,获得积分10
31秒前
serendipity完成签到 ,获得积分10
32秒前
桐桐应助安详的惜梦采纳,获得10
36秒前
巴拉巴拉巴拉拉完成签到,获得积分10
39秒前
YOLO完成签到 ,获得积分10
44秒前
我剑也未尝不利应助Nancy采纳,获得20
46秒前
薇薇安完成签到,获得积分10
47秒前
端庄的魔镜完成签到 ,获得积分10
48秒前
49秒前
归尘发布了新的文献求助10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779459
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220692
捐赠科研通 3040129
什么是DOI,文献DOI怎么找? 1668576
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522