PCKRF: Point Cloud Completion and Keypoint Refinement With Fusion Data for 6D Pose Estimation

点云 计算机科学 姿势 融合 人工智能 传感器融合 计算机视觉 点(几何) 数学 语言学 哲学 几何学
作者
Yiheng Han,Irvin Haozhe Zhan,Long Zeng,Yu‐Ping Wang,Ran Yi,Minjing Yu,Matthieu Gaetan Lin,Jenny Sheng,Yong‐Jin Liu
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:31 (7): 3883-3896 被引量:2
标识
DOI:10.1109/tvcg.2024.3390122
摘要

Some robust point cloud registration approaches with controllable pose refinement magnitude, such as ICP and its variants, are commonly used to improve 6D pose estimation accuracy. However, the effectiveness of these methods gradually diminishes with the advancement of deep learning techniques and the enhancement of initial pose accuracy, primarily due to their lack of specific design for pose refinement. In this paper, we propose Point Cloud Completion and Keypoint Refinement with Fusion Data (PCKRF), a new pose refinement pipeline for 6D pose estimation. The pipeline consists of two steps. First, it completes the input point clouds via a novel pose-sensitive point completion network. The network uses both local and global features with pose information during point completion. Then, it registers the completed object point cloud with the corresponding target point cloud by our proposed Color supported Iterative KeyPoint (CIKP) method. The CIKP method introduces color information into registration and registers a point cloud around each keypoint to increase stability. The PCKRF pipeline can be integrated with existing popular 6D pose estimation methods, such as the full flow bidirectional fusion network, to further improve their pose estimation accuracy. Experiments demonstrate that our method exhibits superior stability compared to existing approaches when optimizing initial poses with relatively high precision. Notably, the results indicate that our method effectively complements most existing pose estimation techniques, leading to improved performance in most cases. Furthermore, our method achieves promising results even in challenging scenarios involving textureless and symmetrical objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
i7完成签到,获得积分10
1秒前
英姑应助纯情的咖啡采纳,获得10
1秒前
酷波er应助ll采纳,获得10
2秒前
云朵儿糖发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
5秒前
浅弋完成签到,获得积分10
5秒前
6秒前
7秒前
123456发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
8秒前
8秒前
小透明发布了新的文献求助10
9秒前
啦啦完成签到,获得积分10
9秒前
gzj发布了新的文献求助10
10秒前
10秒前
ldn完成签到,获得积分10
10秒前
852应助Aletta采纳,获得10
10秒前
3386582258应助肥仔龙采纳,获得10
11秒前
xiaoyi完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
渔婆发布了新的文献求助10
13秒前
AN发布了新的文献求助30
14秒前
14秒前
蓝一梁完成签到,获得积分10
15秒前
ldn发布了新的文献求助30
15秒前
小二郎应助鹿笙采纳,获得10
15秒前
FashionBoy应助乌鲁鲁小行星采纳,获得10
16秒前
acui完成签到 ,获得积分10
16秒前
优秀的千柳完成签到 ,获得积分10
16秒前
zhiwei完成签到 ,获得积分10
18秒前
wxyz完成签到,获得积分10
18秒前
子车茗应助zhangenbo采纳,获得30
19秒前
19秒前
mjy发布了新的文献求助10
20秒前
Ava应助空谷新苗采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752005
求助须知:如何正确求助?哪些是违规求助? 5472107
关于积分的说明 15372690
捐赠科研通 4891243
什么是DOI,文献DOI怎么找? 2630235
邀请新用户注册赠送积分活动 1578409
关于科研通互助平台的介绍 1534398