SSAE-AM: A Prediction Model for Fatigue Crack Growth

计算机科学
作者
Boyang Zhao,Wei Dai,Yun Lin,Haoyang Liang,Ning Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 23032-23044 被引量:4
标识
DOI:10.1109/jiot.2024.3385012
摘要

Real-time monitoring and prediction of damages form the basis of Artificial Intelligence for IT Operations (AIOps) in mechanical equipment, relying on the Internet of Things (IoT). Acoustic emission technology is widely used in Prognostic and Health Management (PHM) to monitor the growth of fatigue cracks online. Extracting and selecting high-quality acoustic emission features are crucial to the accuracy of fatigue crack prediction, as it helps establish the relationship between these features and fatigue crack growth (FCG). However, traditional artificially selected acoustic emission features are seriously affected by the signal amplitude threshold. To solve the above problems, we proposed a fatigue crack prediction model based on the improved stacked autoencoder and attention mechanism (SSAE-AM). The model can adaptively extract acoustic emission features that are strongly correlated with FCG by adding a supervision module to the stacked autoencoder (SAE) and using the attention mechanism (AM)to weight the fusion features. On this basis, the relationship model between acoustic emission features and FCG is established for crack prediction. Finally, we verify the validity of the model through experiments that monitor fatigue crack growth under different loading stresses. Compared with models that use other acoustic emission statistical features for crack prediction, the model proposed in this paper can achieve better prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
多情的白云完成签到,获得积分10
刚刚
赘婿应助果实采纳,获得10
1秒前
充电宝应助爽歪歪采纳,获得10
1秒前
KyleChak发布了新的文献求助20
1秒前
顾矜应助友好代亦采纳,获得10
1秒前
蔡蝶蝶完成签到,获得积分20
2秒前
2秒前
李健的小迷弟应助嘉杰采纳,获得10
2秒前
李健应助lx840518采纳,获得10
2秒前
搜集达人应助xiaoyao采纳,获得10
2秒前
浮游应助罗玉采纳,获得10
3秒前
suxiang发布了新的文献求助100
3秒前
彭于晏应助科研采纳,获得10
3秒前
朝阳完成签到,获得积分10
4秒前
heart完成签到,获得积分10
4秒前
4秒前
Akim应助小唐采纳,获得10
4秒前
sttich完成签到,获得积分10
5秒前
majm完成签到,获得积分10
5秒前
科研狗完成签到 ,获得积分10
5秒前
zhjp完成签到,获得积分10
6秒前
6秒前
6秒前
丘比特应助抹茶冰拿铁采纳,获得10
6秒前
丰知然应助机智安青采纳,获得10
7秒前
7秒前
艾格尔的小提琴完成签到 ,获得积分10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Meng完成签到,获得积分10
11秒前
11秒前
hzbzh完成签到,获得积分10
11秒前
强扭的瓜发布了新的文献求助10
11秒前
Freya完成签到,获得积分10
11秒前
田様应助冬灵采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5471902
求助须知:如何正确求助?哪些是违规求助? 4574311
关于积分的说明 14345445
捐赠科研通 4501650
什么是DOI,文献DOI怎么找? 2466412
邀请新用户注册赠送积分活动 1454508
关于科研通互助平台的介绍 1429069