PhysiCausalNet: A Causal- and Physics-Driven Domain Generalization Network for Cross-Machine Fault Diagnosis of Unseen Domain

一般化 领域(数学分析) 计算机科学 人工智能 断层(地质) 机器学习 数学 数学分析 地震学 地质学
作者
Yumeng Zhu,Yanyang Zi,Jie Li,Jing Xu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 8488-8498 被引量:8
标识
DOI:10.1109/tii.2024.3369240
摘要

Domain generalization for intelligent fault diagnosis is a technology that can acquire diagnostic knowledge from related machines and generalize to the unseen domain. However, the structure and working conditions differences between machines lead to significant variation in data distribution, making it difficult to generalize the trained network directly to unseen machines. This research proposed PhysiCausalNet, a causal- and physics-driven domain generalization network that mines the fault causality and incorporates the physical prior knowledge of the unseen target machine to realize domain-invariant feature extraction and domain-specific knowledge embedding. To form the cross-domain invariant causal mechanism, the progressive consistency causal factorization loss is proposed to separate the fault causal factors from implicit representation. Meanwhile, for the adaptability to a specific domain without involving the target domain data, the Fourier filter demodulation structure is proposed to extract periodic fault components, and the dynamics embedding loss is designed according to prior physical knowledge of the target machine as a physical constraint for the network. The effectiveness of proposed approach is verified in four machines and twelve working conditions including public, laboratory, and industrial datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗艳一发布了新的文献求助10
刚刚
yiming完成签到,获得积分10
1秒前
浅夏初晴发布了新的文献求助10
4秒前
无限鲜花发布了新的文献求助10
9秒前
彭于晏应助ocean采纳,获得10
9秒前
幽默宛亦完成签到,获得积分10
11秒前
CUN完成签到,获得积分10
15秒前
李爱国应助www采纳,获得10
17秒前
18秒前
hersy完成签到,获得积分10
19秒前
20秒前
科研通AI2S应助善良黑夜采纳,获得10
20秒前
22秒前
华子黄完成签到,获得积分10
22秒前
CarryLJR发布了新的文献求助10
23秒前
蛇虫鼠蚁应助冷傲的帽子采纳,获得20
23秒前
隐形曼青应助寒冷的踏歌采纳,获得30
24秒前
夏一苒发布了新的文献求助10
26秒前
111发布了新的文献求助10
26秒前
waitstill完成签到,获得积分10
27秒前
28秒前
28秒前
大模型应助CarryLJR采纳,获得10
30秒前
你好完成签到,获得积分10
30秒前
31秒前
32秒前
bkagyin应助哈理老萝卜采纳,获得10
32秒前
DaYongDan完成签到 ,获得积分10
32秒前
无花果应助111采纳,获得10
32秒前
www发布了新的文献求助10
33秒前
ALICE完成签到,获得积分10
33秒前
33秒前
辣辣完成签到 ,获得积分20
33秒前
顾矜应助KK采纳,获得10
34秒前
Monicadd完成签到,获得积分10
34秒前
芳心纵火犯完成签到,获得积分10
35秒前
Celinewei完成签到 ,获得积分10
35秒前
李爱国应助balala采纳,获得10
36秒前
善良黑夜完成签到,获得积分20
36秒前
深情安青应助mins采纳,获得10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810493
求助须知:如何正确求助?哪些是违规求助? 3354915
关于积分的说明 10373262
捐赠科研通 3071449
什么是DOI,文献DOI怎么找? 1686945
邀请新用户注册赠送积分活动 811316
科研通“疑难数据库(出版商)”最低求助积分说明 766596