Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer

计算机科学 初始化 调度(生产过程) 分布式制造 分布式计算 数学优化 能源消耗 作业车间调度 帕累托原理 工业工程 运筹学 工程类 制造工程 数学 地铁列车时刻表 操作系统 电气工程 程序设计语言
作者
Hongliang Zhang,Yi Chen,Yuteng Zhang,Gongjie Xu
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:140 (2): 1459-1483 被引量:1
标识
DOI:10.32604/cmes.2024.049756
摘要

The distributed flexible job shop scheduling problem (DFJSP) has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production, effective utilization of worker resources can increase productivity.Meanwhile, energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore, the distributed flexible job shop scheduling problem with dual resource constraints (DFJSP-DRC) for minimizing makespan and total energy consumption is studied in this paper.To solve the problem, we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer (Q-MOGWO).In Q-MOGWO, high-quality initial solutions are generated by a hybrid initialization strategy, and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space, two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鄂海菡完成签到,获得积分10
2秒前
小刘完成签到,获得积分10
3秒前
爆米花应助笨笨芯采纳,获得10
3秒前
4秒前
共享精神应助comosum采纳,获得10
5秒前
SciGPT应助ZHY采纳,获得200
5秒前
熠熠完成签到,获得积分10
7秒前
7秒前
任性青烟完成签到,获得积分10
7秒前
科研通AI5应助bodhi采纳,获得10
8秒前
小胡小瑞完成签到,获得积分20
8秒前
HEAUBOOK应助海绵小方块采纳,获得10
8秒前
华仔完成签到,获得积分10
8秒前
子车茗应助kido采纳,获得20
9秒前
9秒前
Lucas应助夜已深采纳,获得10
11秒前
共享精神应助西柚西柚采纳,获得10
11秒前
科研通AI5应助shenerqing采纳,获得10
11秒前
为什么发布了新的文献求助10
13秒前
小胡小瑞发布了新的文献求助10
13秒前
15秒前
17秒前
chen完成签到,获得积分10
17秒前
香蕉觅云应助fly采纳,获得10
18秒前
18秒前
Akim应助多多采纳,获得10
18秒前
Kyrie发布了新的文献求助10
21秒前
彩色完成签到,获得积分10
21秒前
三尺明完成签到 ,获得积分10
23秒前
柠檬完成签到,获得积分10
23秒前
CX发布了新的文献求助10
24秒前
kido完成签到,获得积分10
24秒前
24秒前
26秒前
无语的又夏完成签到,获得积分10
27秒前
小橙子完成签到,获得积分10
27秒前
有魅力的臻完成签到,获得积分10
27秒前
朴素绿真发布了新的文献求助10
28秒前
29秒前
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243