CA‐MLBS: content‐aware machine learning based load balancing scheduler in the cloud environment

计算机科学 云计算 负载平衡(电力) 虚拟机 CloudSim公司 可扩展性 机器学习 粒子群优化 分布式计算 人工智能 数据库 操作系统 几何学 数学 网格
作者
Muhammad Adil,Said Nabi,Muhammad Aleem,Vicente García‐Díaz,Jerry Chun‐Wei Lin
出处
期刊:Expert Systems [Wiley]
卷期号:40 (4) 被引量:4
标识
DOI:10.1111/exsy.13150
摘要

Abstract Cloud computing is the on‐demand provision of computing resources over the Internet, such as cloud storage, computing power, network, and so on. Cloud computing has several advantages, including high speed, cost reduction, data security, and scalability. The main challenge in cloud environment is to balance the workloads and network traffic among the available resources to achieve maximum performance. Several methods have been proposed in the literature for effective load balancing, including heuristic, meta‐heuristic, and hybrid algorithms. The performance of these techniques has been improved by combining machine learning based Artificial Intelligence (AI) techniques and meta‐heuristic algorithms. Most of the existing load balancing techniques are not aware of the content type of user tasks. However, from the literature, the content type of the tasks can be very effective to design a balanced workload distribution system in the cloud. In this work, a novel AI‐assisted hybrid approach called Content‐aware Machine Learning based Load Balancing Scheduler (CA‐MLBS) is proposed. The scheduling system CA‐MLBS combines machine learning and meta‐heuristic algorithms to perform classification based on file type. To achieve this, a Support Vector Machine (SVM) based classifier is used to classify user tasks into different content types such as video, audio, image, and text. A metaheuristic algorithm based on Particle Swarm Optimization (PSO) is used to map users' tasks in the cloud. The proposed approach was implemented and evaluated using a renowned Cloudsim simulation kit and compared with Ant Colony Optimization File Type Format (ACOFTF) and Data Files Type Formatting (DFTF) heuristics. The results of the proposed study show that the proposed CA‐MLBS technique achieved improvements of up to 29%, 29%, and 44% in terms of makespan, response time, and throughput, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的畅完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
1秒前
秋半梦发布了新的文献求助30
1秒前
lalala发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
蓝白的猫完成签到,获得积分10
3秒前
冰魂应助杨思睿采纳,获得20
4秒前
yzy完成签到,获得积分20
4秒前
bym发布了新的文献求助10
4秒前
baobao完成签到,获得积分10
5秒前
5秒前
云悠水澈完成签到,获得积分10
5秒前
付理想发布了新的文献求助10
5秒前
xfyxxh完成签到,获得积分10
5秒前
秋半梦完成签到,获得积分10
5秒前
yangliu071998发布了新的文献求助10
6秒前
longquit完成签到,获得积分10
6秒前
田様应助醉挽清风采纳,获得10
6秒前
丘比特应助hannah采纳,获得10
6秒前
皮皮完成签到,获得积分10
6秒前
6秒前
云123完成签到,获得积分10
7秒前
共享精神应助发dasd采纳,获得30
7秒前
8秒前
天天快乐应助听雨采纳,获得10
8秒前
9秒前
科研通AI5应助优雅的盼夏采纳,获得10
9秒前
orixero应助陈陈陈1采纳,获得50
9秒前
萧水白发布了新的文献求助100
10秒前
PANYIAO完成签到,获得积分10
10秒前
大地上的鱼完成签到,获得积分10
10秒前
思源应助如意的冰双采纳,获得10
10秒前
8464368发布了新的文献求助10
10秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804725
求助须知:如何正确求助?哪些是违规求助? 3349592
关于积分的说明 10345510
捐赠科研通 3065684
什么是DOI,文献DOI怎么找? 1683244
邀请新用户注册赠送积分活动 808762
科研通“疑难数据库(出版商)”最低求助积分说明 764734