Ground-based/UAV-LiDAR data fusion for quantitative structure modeling and tree parameter retrieval in subtropical planted forest

激光雷达 遥感 基本事实 胸径 传感器融合 环境科学 树(集合论) 计算机科学 地理 数学 人工智能 林业 数学分析
作者
Reda Fekry,Wei Yao,Lin Cao,Xin Shen
出处
期刊:Forest Ecosystems [Springer Nature]
卷期号:9: 100065-100065 被引量:47
标识
DOI:10.1016/j.fecs.2022.100065
摘要

Light detection and ranging (LiDAR) has contributed immensely to forest mapping and 3D tree modelling. From the perspective of data acquisition, the integration of LiDAR data from different platforms would enrich forest information at the tree and plot levels. This research develops a general framework to integrate ground-based and UAV-LiDAR (ULS) data to better estimate tree parameters based on quantitative structure modelling (QSM). This is accomplished in three sequential steps. First, the ground-based/ULS LiDAR data were co-registered based on the local density peaks of the clustered canopy. Next, redundancy and noise were removed for the ground-based/ULS LiDAR data fusion. Finally, tree modeling and biophysical parameter retrieval were based on QSM. Experiments were performed for Backpack/Handheld/UAV-based multi-platform mobile LiDAR data of a subtropical forest, including poplar and dawn redwood species. Generally, ground-based/ULS LiDAR data fusion outperforms ground-based LiDAR with respect to tree parameter estimation compared to field data. The fusion-derived tree height, tree volume, and crown volume significantly improved by up to 9.01%, 5.28%, and 18.61%, respectively, in terms of rRMSE. By contrast, the diameter at breast height (DBH) is the parameter that has the least benefits from fusion, and rRMSE remains approximately the same, because stems are already well sampled from ground data. Additionally, particularly for dense forests, the fusion-derived tree parameters were improved compared to those derived from ground-based LiDAR. Ground-based LiDAR can potentially be used to estimate tree parameters in low-stand-density forests, whereby the improvement owing to fusion is not significant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jun完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
王震发布了新的文献求助10
2秒前
11完成签到,获得积分10
2秒前
7298682发布了新的文献求助10
2秒前
2秒前
2秒前
zmk发布了新的文献求助10
2秒前
orixero应助云宝采纳,获得10
4秒前
搜集达人应助米白色梦想采纳,获得10
4秒前
4秒前
4秒前
6秒前
ch发布了新的文献求助10
6秒前
xuleiman发布了新的文献求助10
6秒前
爱的看到完成签到,获得积分10
7秒前
8秒前
lurongjun发布了新的文献求助10
8秒前
甜蜜的缘郡完成签到,获得积分10
8秒前
健壮问兰发布了新的文献求助10
9秒前
缥缈无色发布了新的文献求助10
9秒前
蔡蔡发布了新的文献求助10
9秒前
濮阳冰海发布了新的文献求助10
10秒前
10秒前
今后应助hey采纳,获得30
10秒前
桐桐应助高贵火儿采纳,获得10
11秒前
伍秋望发布了新的文献求助20
12秒前
12秒前
mimi发布了新的文献求助10
13秒前
14秒前
西风漂流应助嗯哼采纳,获得30
15秒前
香菇煲汤完成签到,获得积分10
15秒前
ch完成签到,获得积分10
15秒前
Joeswith完成签到,获得积分10
15秒前
16秒前
温暖的德地发布了新的文献求助150
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462569
求助须知:如何正确求助?哪些是违规求助? 4567325
关于积分的说明 14309902
捐赠科研通 4493205
什么是DOI,文献DOI怎么找? 2461498
邀请新用户注册赠送积分活动 1450542
关于科研通互助平台的介绍 1425874