Classifying Malicious Domains using DNS Traffic Analysis

网络钓鱼 恶意软件 僵尸网络 计算机科学 域名系统 计算机安全 领域(数学分析) 审查 互联网 黑名单 域名 万维网 数学 数学分析
作者
Samaneh Mahdavifar,Nasim Maleki,Arash Habibi Lashkari,Matt Broda,Amir H. Razavi
标识
DOI:10.1109/dasc-picom-cbdcom-cyberscitech52372.2021.00024
摘要

Malicious domains are one of the major threats that have jeopardized the viability of the Internet over the years. Threat actors usually abuse the Domain Name System (DNS) to lure users to be victims of malicious domains hosting drive-by-download malware, botnets, phishing websites, or spam messages. Each year, many large corporations are impacted by these threats, resulting in huge financial losses in a single attack. Thus, detecting and classifying a malicious domain in a timely manner is essential. Previously, filtering the domains against blacklists was the only way to detect malicious domains, however, this approach was unable to detect newly generated domains. Recently, Machine Learning (ML) techniques have helped to enhance the detection capability of domain vetting systems. A solid feature engineering mechanism plays a pivotal role in boosting the performance of any ML model. Therefore, we have extracted effective and practical features from DNS traffic categorizing them into three groups of lexical-based, DNS statistical-based, and third party-based features. Third party features are biographical information about a specific domain extracted from third party APIs. The benign to malicious domain ratio is also critical to simulate the real-world scheme where approximately 99% of the traffic is devoted to benign. In this paper, we generate and release a large DNS features dataset of 400,000 benign and 13,011 malicious samples processed from a million benign and 51,453 known-malicious domains from publicly available datasets. The malicious samples span between three categories of spam, phishing, and malware. Our dataset, namely CIC-Bell-DNS2021 replicates the real-world scenarios with frequent benign traffic and diverse malicious domain types. We train and validate a classification model that, unlike previous works that focus on binary detection, detects the type of the attack, i.e., spam, phishing, and malware. Classification performance of various ML algorithms on our generated dataset proves the effectiveness of our model, where we achieved the best results for $k$ -Nearest Neighbors $k$ -NN) with 94.8% and 99.4% F1-Score for balanced data ratio (60/40%) and imbalanced data ratio (97/3%), respectively. Finally, we have gone through feature evaluation using information gain analysis to get the merits of each feature in each category, proving the third party features as the most influential one among the top 13 features. keywords- Malicious Domain, DNS, Feature Engineering, Lexical, Statistical, Third Party, Classification
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涵涵可以完成签到,获得积分10
1秒前
1秒前
red发布了新的文献求助10
2秒前
linshu发布了新的文献求助10
2秒前
3秒前
大雄的静香完成签到,获得积分10
3秒前
3秒前
哈哈完成签到,获得积分20
3秒前
3秒前
搜集达人应助青雉采纳,获得10
4秒前
熊卿利完成签到,获得积分10
4秒前
不安青牛应助飘逸香彤采纳,获得10
5秒前
耶耶粘豆包完成签到,获得积分10
5秒前
5秒前
6秒前
深年完成签到,获得积分10
6秒前
cxc发布了新的文献求助10
6秒前
浮游应助ashely采纳,获得10
6秒前
科研小白发布了新的文献求助10
6秒前
7秒前
butaishao发布了新的文献求助20
7秒前
HAL应助huhaoran采纳,获得10
7秒前
熊卿利发布了新的文献求助10
7秒前
睡到自然醒完成签到,获得积分20
8秒前
班钰完成签到,获得积分20
8秒前
薛华倩发布了新的文献求助10
8秒前
1147468624发布了新的文献求助10
8秒前
8秒前
9秒前
科研通AI2S应助tiny采纳,获得10
9秒前
英俊的铭应助科研小白采纳,获得10
9秒前
YY完成签到,获得积分10
9秒前
9秒前
高子懿完成签到,获得积分10
9秒前
mf发布了新的文献求助10
10秒前
枔怡完成签到 ,获得积分10
10秒前
青奴发布了新的文献求助10
11秒前
顺利的雁梅完成签到 ,获得积分10
11秒前
西门断缘发布了新的文献求助10
11秒前
Rjy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5441082
求助须知:如何正确求助?哪些是违规求助? 4551892
关于积分的说明 14232774
捐赠科研通 4472902
什么是DOI,文献DOI怎么找? 2451111
邀请新用户注册赠送积分活动 1442077
关于科研通互助平台的介绍 1418241