Procedural Level Generation for Sokoban via Deep Learning: An Experimental Study

计算机科学 自举(财务) 采样(信号处理) 人工智能 机器学习 强化学习 样品(材料) 质量(理念) 多样性(政治) 生成语法 数学 计量经济学 哲学 化学 滤波器(信号处理) 色谱法 认识论 社会学 人类学 计算机视觉
作者
Yahia Zakaria,Magda B. Fayek,Mayada Hadhoud
出处
期刊:IEEE transactions on games [Institute of Electrical and Electronics Engineers]
卷期号:15 (1): 108-120 被引量:8
标识
DOI:10.1109/tg.2022.3175795
摘要

Deep learning for procedural level generation has been explored in many recent works, however, experimental comparisons with previous works are rare and usually limited to the work they extend upon. The goal of this article is to conduct an experimental study on four recent deep learning procedural level generators for Sokoban to explore their strengths and weaknesses. The methods will be bootstrapping conditional generative models, controllable and uncontrollable procedural content generation via reinforcement learning (PCGRL), and generative playing networks. We will propose some modifications to either adapt the methods to the task or improve their performance. For the bootstrapping method, we propose using diversity sampling to improve the solution diversity, training with auxiliary targets to enhance the models' quality and sampling conditions from Gaussian mixture models (GMMs) to improve the sample quality. The results show that the generated solutions are more diverse by at least 16% when diversity sampling is used during training. It also shows that training with auxiliary targets and sampling conditions from GMMs can be used to increase the playability percentage. In our experiments, PCGRL shows superior quality and diversity, while the bootstrapped long-short term memory generators exhibit the least control confusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺万万发布了新的文献求助10
刚刚
刚刚
fanyy发布了新的文献求助10
2秒前
阁下久等了完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
hololoo发布了新的文献求助30
5秒前
5秒前
大个应助每天都要开心采纳,获得80
6秒前
彭于晏应助神勇的砖头采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
张鑫发布了新的文献求助10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
单复天完成签到,获得积分10
7秒前
bkagyin应助端庄的秋翠采纳,获得10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI5应助浮夸采纳,获得10
8秒前
8秒前
xuhang发布了新的文献求助10
10秒前
10秒前
11秒前
施中明完成签到,获得积分20
12秒前
小二郎应助KukudMing采纳,获得10
12秒前
kmg发布了新的文献求助10
13秒前
爱科研的杰杰桀桀完成签到 ,获得积分10
14秒前
14秒前
16秒前
16秒前
16秒前
搜集达人应助小飞飞采纳,获得10
17秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839628
求助须知:如何正确求助?哪些是违规求助? 3382022
关于积分的说明 10520773
捐赠科研通 3101419
什么是DOI,文献DOI怎么找? 1708054
邀请新用户注册赠送积分活动 822103
科研通“疑难数据库(出版商)”最低求助积分说明 773203