清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multibranch Feature Fusion Network With Self- and Cross-Guided Attention for Hyperspectral and LiDAR Classification

激光雷达 计算机科学 人工智能 高光谱成像 特征(语言学) 模式识别(心理学) 像素 判别式 遥感 卷积神经网络 特征提取 仰角(弹道) 计算机视觉 地理 数学 语言学 哲学 几何学
作者
Wenqian Dong,Tian Zhang,Jiahui Qu,Song Xiao,Tongzhen Zhang,Yunsong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:40
标识
DOI:10.1109/tgrs.2022.3179737
摘要

The effective fusion of multi-source data helps to improve performance of land cover classification. Most existing convolutional neural network (CNN) based methods adopt an early/late fusion strategy to fuse the low-level/high-level features for classification, which still has two inherent challenges: i) the conventional convolution operation performs a weighted average operation on each pixel in the receptive field, which will reduce the discriminability of the center pixel due to the influence of the interference pixels, and ii) the spatial-spectral features of the hyperspectral image (HSI), the elevation features of light detection and ranging (LiDAR), and the complementary features between the multimodal data are not fully exploited, which results in the reduction of classification accuracy. In this paper, an effective multi-branch feature fusion network with self- and cross-guided attention (MB2FscgaNet) is proposed for joint classification of LiDAR and HSI. The main concern of this paper is how to accurately estimate more effective spectral-spatial-elevation features and yield more effective transfer in network. Specifically, MB2FscgaNet adopts a multi-branch feature fusion architecture to fully exploit the hierarchical features from LiDAR and HSI level by level. At each level of the network, a self- and cross-guided attention (SCGA) is developed to assign higher weight to interesting areas and channels of LiDAR and HSI feature maps to obtain refined spectral-spatial-elevation features and provide complementary information cross guidance between LiDAR and HS. We further designed a spectral supplement module (SeSuM) to improve the discriminative ability of the center pixel. Comparative classification results and ablation studies demonstrate that the proposed MB2FscgaNet achieves competitive performance against state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎初蝶发布了新的文献求助10
5秒前
谨慎初蝶完成签到,获得积分10
16秒前
领导范儿应助12345采纳,获得50
33秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
通科研完成签到 ,获得积分10
1分钟前
ning_qing完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
12345发布了新的文献求助50
1分钟前
无情的友容完成签到 ,获得积分10
2分钟前
不秃燃的小老弟完成签到 ,获得积分10
2分钟前
苏苏爱学习完成签到 ,获得积分10
2分钟前
spy完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
勿奈何完成签到,获得积分10
3分钟前
3分钟前
jokerhoney完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Sunny完成签到,获得积分10
6分钟前
keyan完成签到 ,获得积分10
6分钟前
一个小胖子完成签到,获得积分10
6分钟前
天凉王破完成签到 ,获得积分10
6分钟前
孙燕应助科研通管家采纳,获得10
7分钟前
葛力发布了新的文献求助10
7分钟前
鱼羊明完成签到 ,获得积分10
8分钟前
勤劳的斑马完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
猫xuan发布了新的文献求助10
9分钟前
arsenal完成签到 ,获得积分10
9分钟前
英俊的铭应助科研通管家采纳,获得10
9分钟前
隐形曼青应助科研通管家采纳,获得10
9分钟前
猫xuan完成签到,获得积分10
9分钟前
景安白给景安白的求助进行了留言
10分钟前
宇文非笑完成签到 ,获得积分0
10分钟前
normankasimodo完成签到,获得积分10
10分钟前
11分钟前
房天川完成签到 ,获得积分0
11分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526417
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603