Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer

无线电技术 医学 乳腺癌 腋窝淋巴结 放射科 淋巴结转移 转移 特征(语言学) 特征选择 人工智能 机器学习 癌症 内科学 计算机科学 语言学 哲学
作者
Yong Tang,Xiaoling Che,Weijia Wang,Song Su,Yue Nie,Chunmei Yang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7555-7566 被引量:2
标识
DOI:10.1002/mp.15873
摘要

Breast cancer (BC) is among the most common cancers worldwide. Machine learning-based radiomics model could predict axillary lymph node metastasis (ALNM) of BC accurately.The purpose is to develop a machine learning model to predict ALNM of BC by focusing on the radiomics features of axillary lymphatic node (ALN).A group of 398 BC patients with 800 ALNs were retrospectively collected. A set of patient characteristics were obtained to form clinical factors. Three hundred and twenty-six radiomics features were extracted from each region of interest for ALN in contrast-enhanced computed tomography (CECT) image. A framework composed of four feature selection methods and 14 machine learning classification algorithms was systematically applied. A clinical model, a radiomics model, and a combined model were developed using a cross-validation approach and compared. Metrics of the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the performance of these models in the prediction of ALNM in BC.Among the 800 cases of ALNs, there were 388 cases of positive metastasis (48.50%) and 412 cases of negative metastasis (51.50%). The baseline clinical model achieved the performance with an AUC = 0.8998 (95% CI [0.8540, 0.9457]). The radiomics model achieved an AUC = 0.9081 (95% CI [0.8640, 0.9523]). The combined model using the clinical factors and radiomics features achieved the best results with an AUC = 0.9305 (95% CI [0.8928, 0.9682]).Combinations of feature selection methods and machine learning-based classification algorithms can develop promising predictive models to predict ALNM in BC using CECT features. The combined model of clinical factors and radiomics features outperforms both the clinical model and the radiomic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漠池完成签到,获得积分10
2秒前
柴郡喵完成签到,获得积分10
3秒前
4秒前
Wxxxxx完成签到 ,获得积分10
5秒前
5秒前
Liao完成签到,获得积分10
5秒前
阳佟若剑完成签到,获得积分10
6秒前
晓晓雪完成签到 ,获得积分10
6秒前
7秒前
8秒前
彳亍完成签到,获得积分10
9秒前
激昂的秀发完成签到,获得积分10
10秒前
乐观囧发布了新的文献求助10
10秒前
bo完成签到 ,获得积分10
12秒前
MYZ完成签到,获得积分10
13秒前
梧桐完成签到,获得积分10
13秒前
jameslee04完成签到 ,获得积分10
14秒前
四十四次日落完成签到 ,获得积分10
14秒前
18秒前
daqing完成签到,获得积分10
18秒前
19秒前
chen完成签到,获得积分10
19秒前
深情千雁完成签到,获得积分10
20秒前
酷酷的碳完成签到 ,获得积分10
22秒前
22秒前
sunsunsun完成签到,获得积分10
22秒前
zyz完成签到,获得积分10
23秒前
smile完成签到,获得积分10
24秒前
Jenny发布了新的文献求助10
25秒前
25秒前
英俊的铭应助冬1采纳,获得10
25秒前
呆萌刺猬完成签到 ,获得积分10
25秒前
斯文败类应助沉静的书南采纳,获得10
25秒前
26秒前
123567发布了新的文献求助10
28秒前
matt完成签到,获得积分10
29秒前
31秒前
刘哔完成签到,获得积分10
31秒前
fufufufu完成签到,获得积分10
32秒前
Leach完成签到 ,获得积分10
32秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3913966
求助须知:如何正确求助?哪些是违规求助? 3459028
关于积分的说明 10904078
捐赠科研通 3185712
什么是DOI,文献DOI怎么找? 1761105
邀请新用户注册赠送积分活动 851853
科研通“疑难数据库(出版商)”最低求助积分说明 792999