Failure of a brittle layer on a ductile substrate: Nanoindentation experiments and FEM simulations

材料科学 纳米压痕 缩进 微电子 钝化 脆性 复合材料 图层(电子) 分层(地质) 有限元法 结构工程 光电子学 古生物学 生物 俯冲 构造学 工程类
作者
Morgan Rusinowicz,Guillaume Parry,Fabien Volpi,David Mercier,S. Eve,U. Lüders,Florent Lallemand,M. Choquet,Muriel Braccini,Chaymaa Boujrouf,Éric Hug,Rosine Coq Germanicus,M. Verdier
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:163: 104859-104859 被引量:10
标识
DOI:10.1016/j.jmps.2022.104859
摘要

Functional devices such as microelectronic systems, solar cells and power devices are composed of complex stacks of various materials, including semiconductors, ceramics and metallic alloys. The knowledge of the mechanical response of those stacks is a key point, as they are submitted to harsh stresses during the fabrication process (induced by thermal treatments, mechanical polishing, packaging processes, ...) as well as during the device lifetime. We report the mechanical study of a microelectronic-dedicated stack where a silicon nitride (Si 3 N 4 ) layer was deposited on top of a thick metallic alloy (AlSiCu) layer. In microelectronic chips, Si 3 N 4 is widely used as a passivation layer, while AlSiCu is the electrical connection layer. The structure has been tested experimentally by nanoindentation. Multiple pop-in events were observed on the loading curves, indicating multiple cracking, with cracks initiated at various loading stages. The high reproducibility of the loading curves then allowed their full analysis by numerical modeling. The complete damage process of the multilayer during indentation is analyzed using modeling by the Finite Element Method (FEM), accounting for plasticity in AlSiCu, crack propagation in the Si 3 N 4 layer and possible delamination at the interface between the two layers. The various stages of the damage process occurring in the Si 3 N 4 are elucidated, showing in particular the occurrence of a first crack in the region underneath the indenter (hence not visible by a surface observation), followed by a second crack forming further away from the indenter, on the top surface of the layer. Moreover, a novel procedure for the identification of the Si 3 N 4 layer tensile strength is presented, using an inverse method based on FEM simulations and experimental data. The results of the simulations (cracking patterns and cracks locations) are also further validated by the observation of structure cross-sections with a Scanning Electron Microscope (SEM) after Focused Ion Beam (FIB) milling of the sample. In addition, the proposed identification procedure is quite generic and can be adapted to other systems showing similar multiple-cracking patterns under indentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxx完成签到 ,获得积分10
刚刚
2秒前
HNDuan完成签到,获得积分10
2秒前
3秒前
烟花应助晨雾锁阳采纳,获得10
3秒前
鸡鱼蚝完成签到,获得积分10
4秒前
隐形曼青应助冷静水蓝采纳,获得10
4秒前
4秒前
jenningseastera应助Akin采纳,获得10
5秒前
5秒前
5秒前
LuDans发布了新的文献求助20
6秒前
瀚泛完成签到,获得积分10
7秒前
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
今后应助朝朝暮暮采纳,获得10
8秒前
Thien应助科研通管家采纳,获得10
8秒前
Thien应助科研通管家采纳,获得10
8秒前
一二发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
cdercder应助科研通管家采纳,获得10
8秒前
无限柠檬4519完成签到,获得积分10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
lz应助科研通管家采纳,获得30
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
zz应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
11秒前
科研通AI5应助7123采纳,获得10
11秒前
12秒前
14秒前
zx完成签到,获得积分10
15秒前
桐桐应助朱成洋采纳,获得10
16秒前
17秒前
18秒前
西瓜发布了新的文献求助20
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435