High-performance concrete strength prediction based on ensemble learning

硅粉 抗压强度 极限抗拉强度 粉煤灰 集成学习 阿达布思 机器学习 试验数据 材料科学 随机森林 计算机科学 人工智能 复合材料 支持向量机 程序设计语言
作者
Qingfu Li,Zongming Song
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:324: 126694-126694 被引量:12
标识
DOI:10.1016/j.conbuildmat.2022.126694
摘要

• Four ensemble learning models, AdaBoost, GBDT, XGBoost, and random forest, were used to study. • The effects of the dataset division ratio on model performance were explored through tests. • The model shows superiority in comparison with traditional machine learning models. • The model with the best prediction performance is GBDT. The compressive strength and tensile strength of high-performance concrete (HPC) are important mechanical property indexes. However, the related mechanical tests are time-consuming; therefore, predicting the strength of HPC using available test data is important. In this study, compressive strength and tensile strength tests were conducted on HPC with fly ash and silica fume separately, with fly ash and silica fume together, and with fly ash, silica fume, and polypropylene fiber in triple-blending. Based on the analysis of the test data, the contribution of silica fume to the increase in compressive strength and tensile strength occurred in the early stage of maintenance, whereas the contribution of fly ash to the increase in compressive strength and tensile strength occurred in the late stage of maintenance. Four ensemble learning models, AdaBoost, GBDT, XGBoost and random forest, were used in this study. The optimal data set division ratio was tested to be 8:2. The sensitivity of the input variables was obtained through the model. The best prediction model among the four ensemble learning models established was GBDT, and the GBDT model showed a good performance with other machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
最好完成签到,获得积分10
2秒前
adelalady完成签到,获得积分10
2秒前
高圆圆完成签到,获得积分10
3秒前
3秒前
隐形曼青应助轻松的忆雪采纳,获得10
3秒前
喃喃完成签到,获得积分10
4秒前
yinying发布了新的文献求助150
4秒前
Fengjiu完成签到,获得积分10
5秒前
陈鼎都发布了新的文献求助10
5秒前
6秒前
AHa发布了新的文献求助10
6秒前
充电宝应助七仔采纳,获得10
7秒前
文武兼备完成签到,获得积分10
8秒前
滴滴哩哩完成签到,获得积分10
8秒前
赘婿应助小马驹采纳,获得10
9秒前
崔小熊完成签到,获得积分10
9秒前
9秒前
会飞的野马完成签到,获得积分10
9秒前
最好发布了新的文献求助10
9秒前
NexusExplorer应助Mn采纳,获得20
10秒前
万能图书馆应助北珏采纳,获得30
11秒前
kellyzzm发布了新的文献求助10
11秒前
Czerkingsky完成签到,获得积分10
11秒前
威武画板完成签到 ,获得积分10
11秒前
可靠的冰烟完成签到,获得积分10
13秒前
zhutae完成签到,获得积分10
14秒前
14秒前
Yolen LI发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
SciGPT应助简单水蓉采纳,获得10
17秒前
19秒前
19秒前
yinying完成签到,获得积分10
19秒前
小马驹完成签到,获得积分20
19秒前
云雾完成签到 ,获得积分10
19秒前
桐桐应助疾风采纳,获得10
20秒前
玖兰发布了新的文献求助10
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243