GMNN2CD: identification of circRNA–disease associations based on variational inference and graph Markov neural networks

推论 自编码 计算机科学 马尔可夫链 人工智能 合并(版本控制) 图形 人工神经网络 模式识别(心理学) 机器学习 理论计算机科学 数据挖掘 情报检索
作者
Mengting Niu,Quan Zou,Chunyu Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (8): 2246-2253 被引量:49
标识
DOI:10.1093/bioinformatics/btac079
摘要

Abstract Motivation With the analysis of the characteristic and function of circular RNAs (circRNAs), people have realized that they play a critical role in the diseases. Exploring the relationship between circRNAs and diseases is of far-reaching significance for searching the etiopathogenesis and treatment of diseases. Nevertheless, it is inefficient to learn new associations only through biotechnology. Results Consequently, we present a computational method, GMNN2CD, which employs a graph Markov neural network (GMNN) algorithm to predict unknown circRNA–disease associations. First, used verified associations, we calculate semantic similarity and Gaussian interactive profile kernel similarity (GIPs) of the disease and the GIPs of circRNA and then merge them to form a unified descriptor. After that, GMNN2CD uses a fusion feature variational map autoencoder to learn deep features and uses a label propagation map autoencoder to propagate tags based on known associations. Based on variational inference, GMNN alternate training enhances the ability of GMNN2CD to obtain high-efficiency high-dimensional features from low-dimensional representations. Finally, 5-fold cross-validation of five benchmark datasets shows that GMNN2CD is superior to the state-of-the-art methods. Furthermore, case studies have shown that GMNN2CD can detect potential associations. Availability and implementation The source code and data are available at https://github.com/nmt315320/GMNN2CD.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
ho应助wocao采纳,获得10
1秒前
PangXidan应助手术刀采纳,获得10
1秒前
1秒前
巴蒂发布了新的文献求助10
2秒前
Jin完成签到,获得积分10
3秒前
川流完成签到,获得积分10
3秒前
3秒前
心灵美的雁荷完成签到,获得积分10
4秒前
4秒前
4秒前
橙子完成签到 ,获得积分10
4秒前
顾子墨发布了新的文献求助10
5秒前
FashionBoy应助General采纳,获得10
5秒前
5秒前
li发布了新的文献求助10
5秒前
爱学习的小曹完成签到,获得积分10
6秒前
乐闻完成签到,获得积分10
6秒前
chengying624发布了新的文献求助10
7秒前
7秒前
lishanshan发布了新的文献求助20
7秒前
风宝宝发布了新的文献求助10
7秒前
cistronic完成签到,获得积分10
8秒前
8秒前
dearcih完成签到,获得积分10
8秒前
Akim应助xh采纳,获得10
8秒前
eAN发布了新的文献求助10
8秒前
8秒前
五一完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
9秒前
alice完成签到,获得积分10
9秒前
不来也不去完成签到 ,获得积分10
10秒前
10秒前
赘婿应助leodu采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257965
求助须知:如何正确求助?哪些是违规求助? 4419974
关于积分的说明 13758480
捐赠科研通 4293444
什么是DOI,文献DOI怎么找? 2355931
邀请新用户注册赠送积分活动 1352389
关于科研通互助平台的介绍 1313159