材料科学
结构工程
承载力
抗弯强度
失效模式及影响分析
有限元法
屈曲
可塑性
张力(地质)
复合材料
压缩(物理)
复合数
高强度钢
拱门
工程类
作者
Zaiyu Zhang,Qing Sun,Jiaqi Wang,Chao Zhao,Bingzhen Zhao,Jian-Tao Wang
出处
期刊:Materials
[MDPI AG]
日期:2022-05-26
卷期号:15 (11): 3790-3790
被引量:4
摘要
Using high-strength steel (yield strength fy ≥ 460 MPa) in concrete-filled steel tubes is expected to provide a superior bearing capacity by achieving light weight and efficient construction, but the existing design limitation on diameter-to-thickness (D/t) ratios for concrete-filled high-strength steel tubular (CFHST) members inevitably obstructs its wide application. In this study, aiming at the application of circular CFHST members using Q690 steel (fy ≥ 690 MPa), a total of 15 CFHST beams were examined using a three-point loading test to investigate the failure mode, bearing capacity and plasticity evolution. Subsequently, finite element models (FEMs) were established to analyze the full-range curves, composite effect, failure mechanism and influences of key parameters including material strengths, D/t ratios, and shear-span ratios. A simplified calculation method for bearing capacity was finally proposed and verified. The results indicate that the full-range performance of tested CFHST members with out-of-code D/t ratios have ductile behavior, though they fail through the mode of steel fracture and concrete cracks in the tension zone as well as through local buckling in the compression zone; out-of-code CFHST members (e.g., D/t = 120) can perform reasonable composite behavior because of contact pressure larger than 2.5 MPa, where a thin-walled steel tube experiences an arch failure mechanism similar to core concrete at a trussed angle of 45°; the simplified bearing capacity model achieves a mean value of 0.97, and can be accepted as a primary tool to perform structural design and performance evaluation.
科研通智能强力驱动
Strongly Powered by AbleSci AI