Asphalt pavement macrotexture reconstruction from monocular image based on deep convolutional neural network

卷积神经网络 RGB颜色模型 人工智能 计算机视觉 单眼 计算机科学 深度学习
作者
Shihao Dong,Sen Han,Chi Wen Wu,Ouming Xu,Haiyu Kong
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (13): 1754-1768 被引量:28
标识
DOI:10.1111/mice.12878
摘要

Abstract Pavement macrotexture is one of the major factors affecting pavement functions, and it is meaningful to reconstruct the pavement macrotexture rapidly and accurately for pavement life cycle performance and quality evaluation. To reconstruct pavement macrotexture from monocular image, a novel method was developed based on a deep convolutional neural network (CNN). First, the red‐green‐blue (RGB) images and depth maps (RGB‐D) of pavement texture were acquired by smartphone and laser texture scanner, respectively, from various asphalt mixture slab specimens fabricated in the laboratory, and the pavement texture RGB‐D dataset was established from scratch. Then, an encoder–decoder CNN architecture was proposed based on residual network‐101, and different training strategies were discussed for model optimization. Finally, the precision of the CNN and the three‐dimensional characteristics of the reconstructed macrotexture were analyzed. The results show that the established RGB‐D dataset can be used for training directly, and the established CNN architecture is plausible and effective. The mean texture depth and f 8 mac of the reconstructed macrotexture both correlate with the benchmarks significantly, and the correlation coefficients are 0.88 and 0.96, respectively. It could be concluded that the proposed CNN can reconstruct the macrotexture from monocular RGB images precisely, and the reconstructed macrotexture could be further used for pavement macrotexture evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KONOHA完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助50
1秒前
王永达完成签到,获得积分10
3秒前
3秒前
Qian发布了新的文献求助10
3秒前
仲誉发布了新的文献求助10
4秒前
5秒前
Hello应助可乐不加冰采纳,获得10
6秒前
6秒前
6秒前
笑咕噜发布了新的文献求助10
7秒前
科研通AI6应助王永达采纳,获得10
8秒前
8秒前
9秒前
10秒前
张泽轩发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助150
11秒前
HAO完成签到,获得积分10
11秒前
大模型应助冀晓梦采纳,获得10
11秒前
蕙心发布了新的文献求助10
11秒前
11秒前
早日毕业完成签到,获得积分10
11秒前
T_KYG完成签到,获得积分10
12秒前
别梦寒发布了新的文献求助10
13秒前
也许飞鸟能到那个木屋完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
隐形曼青应助Qian采纳,获得10
18秒前
橙子完成签到,获得积分10
18秒前
t通发布了新的文献求助10
19秒前
21秒前
哒哒哒完成签到,获得积分10
22秒前
英俊的铭应助蕙心采纳,获得10
24秒前
别梦寒完成签到,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
悦耳寒云完成签到,获得积分10
27秒前
27秒前
lyricadam发布了新的文献求助20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5057136
求助须知:如何正确求助?哪些是违规求助? 4282531
关于积分的说明 13345908
捐赠科研通 4099525
什么是DOI,文献DOI怎么找? 2244328
邀请新用户注册赠送积分活动 1250382
关于科研通互助平台的介绍 1180864