偷看
材料科学
结晶度
复合材料
热的
退火(玻璃)
热电偶
热传递
喷嘴
聚合物
机械工程
热力学
物理
工程类
墨水池
作者
Austin Lee,Mathew Wynn,Liam Quigley,Marco Salviato,Navid Zobeiry
标识
DOI:10.1016/j.aime.2022.100085
摘要
Additive manufacturing parameters of high-performance polymers greatly affect the thermal history and consequently quality of the end-part. For fused deposition modeling (FDM), this may include printing speed, filament size, nozzle, and chamber temperatures, as well as build plate temperature. In this study, the effect of thermal convection inside a commercial 3D printer on thermal history and crystalline morphology of polyetheretherketone (PEEK) was investigated using a combined experimental and numerical approach. Using digital scanning calorimetry (DSC) and polarized optical microscopy (POM), crystallinity of PEEK samples was studied as a function of thermal history. In addition, using finite element (FE) simulations of heat transfer, which were calibrated using thermocouple measurements, thermal history of parts during virtual 3D printing was evaluated. By correlating the experimental and numerical results, the effect of printing parameters and convection on thermal history and PEEK crystalline morphology was established. It was found that the high melting temperature of PEEK, results in fast melt cooling rates followed by short annealing times during printing, leading to relatively low degree of crystallinity (DOC) and small crystalline morphology.
科研通智能强力驱动
Strongly Powered by AbleSci AI