清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unravelling the effect of defect density, grain boundary and gradient doping in an efficient lead-free formamidinium perovskite solar cell

甲脒 钙钛矿(结构) 钙钛矿太阳能电池 材料科学 太阳能电池 光电子学 兴奋剂 氧化锡 氧化铟锡 能量转换效率 粒度 图层(电子) 纳米技术 化学 复合材料 结晶学
作者
Faisal Saeed,Hasan Erteza Gelani
出处
期刊:Optical Materials [Elsevier]
卷期号:124: 111952-111952 被引量:19
标识
DOI:10.1016/j.optmat.2021.111952
摘要

Here we detailed a computational investigation of novel structured formamidinium tin tri-iodide (HC(NH2)SnI3or FASnI3where FA=formamidinium) perovskite solar cell. The proposed perovskite solar cell is of the architecture of glass substrate: fluorine-doped tin oxide (FTO)-oxide layer (OL)/Titanium di-oxide – electron transport layer (ETL)/ (HC(NH2SnI3−FASnI3) –perovskite absorber/spiro-omeTad-hole transport layer (HTL)/gold (Au) contacts. A power conversion efficiency of 21.24% was achieved using uniform doping and 21.5% with gradient doping. The incorporation of 0.01 μm grain boundary layer considerably effected the device performance and efficiency was dropped to 19.8%. The absorber layer parameters including layer thickness and defect density (or trap density) were also varied to inspect their impact on device performance. Further the paper also provide insights on the Mott-Schottky behavior, frequency dependent capacitance spectrum, optical absorption spectra, temperature variation impacts and the influence of resistance variation on device performance. The results of the quantum efficiency as a function of incident light wavelength depict that the proposed perovskite solar cell has a great potential to absorb a wider range of wavelengths (300 nm–900 nm) across the solar spectrum. The in-detail investigation of device characteristics revealed that the simulation model can become a useful guide in future fabrication of the efficient nano-structured formamidinium tin iodide based perovskite solar cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晞暝完成签到,获得积分10
19秒前
赘婿应助Axel采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
NattyPoe应助科研通管家采纳,获得10
30秒前
星辰大海应助科研通管家采纳,获得10
30秒前
顾矜应助科研通管家采纳,获得10
30秒前
31秒前
37秒前
量子星尘发布了新的文献求助30
38秒前
39秒前
45秒前
45秒前
49秒前
Perry完成签到,获得积分0
50秒前
桐桐应助笑点低中心采纳,获得10
54秒前
1分钟前
牛马完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
胖小羊完成签到 ,获得积分10
2分钟前
merrylake完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
和谐的夏岚完成签到 ,获得积分10
3分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Axel完成签到,获得积分10
3分钟前
Axel发布了新的文献求助10
3分钟前
qazwsx应助无语的代真采纳,获得20
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764654
求助须知:如何正确求助?哪些是违规求助? 5553242
关于积分的说明 15406415
捐赠科研通 4899702
什么是DOI,文献DOI怎么找? 2635916
邀请新用户注册赠送积分活动 1584075
关于科研通互助平台的介绍 1539301