Development and Validation of a Nomogram for Predicting Sarcopenia in Community-Dwelling Older Adults

列线图 肌萎缩 医学 接收机工作特性 逻辑回归 老年学 多元分析 体质指数 风险评估 婚姻状况 物理疗法 内科学 环境卫生 人口 计算机安全 计算机科学
作者
Yihan Mo,Yi-Dong Su,Xin Dong,Jing Zhong,Chen Yang,Wenyu Deng,Xuemei Yao,Beibei Liu,Xiuhua Wang
出处
期刊:Journal of the American Medical Directors Association [Elsevier BV]
卷期号:23 (5): 715-721.e5 被引量:27
标识
DOI:10.1016/j.jamda.2021.11.023
摘要

Objective To establish and validate a nomogram that predicts the risk of sarcopenia for community-dwelling older residents. Design Retrospective study. Setting and Participants A total of 1050 community-dwelling older adults. Methods Data from a survey of community-dwelling older residents (≥60 years old) in Hunan, China, from June to September 2019 were retrospectively analyzed. The survey included general demographic information, diet, and exercise habits. Sarcopenia diagnosis was according to 2019 Asian Working Group for Sarcopenia criteria. Participants were randomly divided into the development group and validation groups. Independent risk factors were screened by multivariate logistic regression analysis. Based on the independent risk factors, a nomogram model was developed to predict the risk of sarcopenia for community-dwelling older adults. Both in the development and validation sets, the discrimination, calibration, and clinical practicability of the nomogram were verified using receiver operating characteristic curve analysis, Hosmer-Lemeshow test, and decision curve analysis, respectively. Results Sarcopenia was identified in 263 (25.0%) participants. Age, body mass index, marital status, regular physical activity habit, uninterrupted sedentary time, and dietary diversity score were significant contributors to sarcopenia risk. A nomogram for predicting sarcopenia in community-dwelling older adults was developed using these factors. Receiver operating characteristic curve analysis showed that the area under the curve was 0.827 (95% CI 0.792-0.860) and 0.755 (95% CI 0.680-0.837) in the development and validation sets, respectively. The Hosmer-Lemeshow test yielded P values of .609 and .565, respectively, for the 2 sets. The nomogram demonstrated a high net benefit in the clinical decision curve in both sets. Conclusions and Implications This study developed and validated a risk prediction nomogram for sarcopenia among community-dwelling older adults. Sarcopenia risk was classified as low (<11%), moderate (11%-70%), and high (>70%). This nomogram provides an accurate visual tool to medical staff, caregivers, and older adults for prediction, early intervention, and graded management of sarcopenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄启烽完成签到,获得积分10
刚刚
科研小白完成签到,获得积分10
1秒前
3秒前
斐乐完成签到,获得积分10
3秒前
HHHH完成签到,获得积分10
3秒前
赵坤煊完成签到 ,获得积分0
3秒前
晴心完成签到,获得积分10
5秒前
多年以后完成签到,获得积分10
8秒前
大个应助djbj2022采纳,获得20
10秒前
风清扬应助ccc采纳,获得10
10秒前
传奇3应助ccc采纳,获得10
10秒前
李爱国应助ccc采纳,获得10
10秒前
负责吃饭完成签到,获得积分10
10秒前
科研小白发布了新的文献求助10
11秒前
12秒前
我是老大应助读书的时候采纳,获得10
14秒前
17秒前
17秒前
科研通AI5应助Yurui_Li采纳,获得10
20秒前
21秒前
21秒前
小马发布了新的文献求助30
21秒前
21秒前
dnliu发布了新的文献求助10
24秒前
25秒前
冰之发布了新的文献求助10
26秒前
djbj2022发布了新的文献求助20
26秒前
yema完成签到 ,获得积分10
27秒前
Tink完成签到,获得积分0
28秒前
顾矜应助机智的凡采纳,获得10
28秒前
英姑应助李李李采纳,获得10
30秒前
开心绿柳发布了新的文献求助10
33秒前
34秒前
顺利梦之完成签到 ,获得积分10
34秒前
小桃子完成签到,获得积分10
34秒前
nehsiac应助科研通管家采纳,获得10
36秒前
pu应助科研通管家采纳,获得10
36秒前
nehsiac应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
36秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084349
求助须知:如何正确求助?哪些是违规求助? 3623538
关于积分的说明 11494662
捐赠科研通 3337945
什么是DOI,文献DOI怎么找? 1835102
邀请新用户注册赠送积分活动 903677
科研通“疑难数据库(出版商)”最低求助积分说明 821848