Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs

医学 骶髂关节炎 接收机工作特性 射线照相术 人工智能 放射科 卷积神经网络 磁共振成像 曲线下面积 核医学 内科学 计算机科学
作者
Kemal Üreten,Yüksel Maraş,Semra Duran,Kevser Gök
出处
期刊:Modern Rheumatology [Oxford University Press]
卷期号:33 (1): 202-206 被引量:23
标识
DOI:10.1093/mr/roab124
摘要

The aim of this study is to develop a computer-aided diagnosis method to assist physicians in evaluating sacroiliac radiographs.Convolutional neural networks, a deep learning method, were used in this retrospective study. Transfer learning was implemented with pre-trained VGG-16, ResNet-101 and Inception-v3 networks. Normal pelvic radiographs (n = 290) and pelvic radiographs with sacroiliitis (n = 295) were used for the training of networks.The training results were evaluated with the criteria of accuracy, sensitivity, specificity and precision calculated from the confusion matrix and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. Pre-trained VGG-16 model revealed accuracy, sensitivity, specificity, precision and AUC figures of 89.9%, 90.9%, 88.9%, 88.9% and 0.96 with test images, respectively. These results were 84.3%, 91.9%, 78.8%, 75.6 and 0.92 with pre-trained ResNet-101, and 82.0%, 79.6%, 85.0%, 86.7% and 0.90 with pre-trained inception-v3, respectively.Successful results were obtained with all three models in this study where transfer learning was applied with pre-trained VGG-16, ResNet-101 and Inception-v3 networks. This method can assist clinicians in the diagnosis of sacroiliitis, provide them with a second objective interpretation and also reduce the need for advanced imaging methods such as magnetic resonance imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小雨发布了新的文献求助10
1秒前
萱瑄爸爸完成签到,获得积分10
1秒前
qinzhikai完成签到,获得积分10
1秒前
Wei完成签到,获得积分10
2秒前
JJBOND发布了新的文献求助10
2秒前
留胡子的小鸽子完成签到,获得积分10
2秒前
快乐尔蝶完成签到,获得积分10
3秒前
英俊的铭应助嘻嘻采纳,获得10
5秒前
plh应助zzznznnn采纳,获得10
5秒前
十三月的毒完成签到,获得积分10
5秒前
善学以致用应助fzy采纳,获得10
6秒前
7秒前
8秒前
mhq发布了新的文献求助10
10秒前
将军发布了新的文献求助10
10秒前
随遇而安完成签到,获得积分10
10秒前
烟花应助时尚的凡白采纳,获得10
11秒前
TOF发布了新的文献求助10
11秒前
pysa完成签到,获得积分10
11秒前
Jasper应助顺心凡之采纳,获得30
11秒前
华仔发布了新的文献求助10
12秒前
红蜻蜓发布了新的文献求助10
12秒前
GGBOND发布了新的文献求助10
13秒前
bluesky发布了新的文献求助10
13秒前
13秒前
今后应助包容的以筠采纳,获得10
14秒前
14秒前
14秒前
15秒前
15秒前
放飞的羊驼完成签到,获得积分10
15秒前
安详的沛菡完成签到,获得积分10
17秒前
18秒前
18秒前
齐鸿轩发布了新的文献求助10
18秒前
18秒前
Jack123发布了新的文献求助10
19秒前
老板娘完成签到,获得积分10
19秒前
Kiki发布了新的文献求助10
19秒前
19秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
Cardiovascular Disease Genetic Risk Prediction Models: A Systematic Review 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063970
求助须知:如何正确求助?哪些是违规求助? 3602387
关于积分的说明 11441255
捐赠科研通 3325526
什么是DOI,文献DOI怎么找? 1828154
邀请新用户注册赠送积分活动 898633
科研通“疑难数据库(出版商)”最低求助积分说明 819103