A simulation study of the number of events per variable in logistic regression analysis

逻辑回归 统计 统计的 数学 回归分析 变量 样本量测定 样品(材料) 差异(会计) 置信区间 瓦尔德试验 蒙特卡罗方法 计量经济学 变量(数学) 统计假设检验 业务 数学分析 会计 化学 色谱法
作者
Peter Peduzzi,John Concato,Elizabeth Kemper,Theodore R. Holford,Alvan R. Feinstein
出处
期刊:Journal of Clinical Epidemiology [Elsevier]
卷期号:49 (12): 1373-1379 被引量:8241
标识
DOI:10.1016/s0895-4356(96)00236-3
摘要

We performed a Monte Carlo study to evaluate the effect of the number of events per variable (EPV) analyzed in logistic regression analysis. The simulations were based on data from a cardiac trial of 673 patients in which 252 deaths occurred and seven variables were cogent predictors of mortality; the number of events per predictive variable was (252/7 =) 36 for the full sample. For the simulations, at values of EPV = 2, 5, 10, 15, 20, and 25, we randomly generated 500 samples of the 673 patients, chosen with replacement, according to a logistic model derived from the full sample. Simulation results for the regression coefficients for each variable in each group of 500 samples were compared for bias, precision, and significance testing against the results of the model fitted to the original sample. For EPV values of 10 or greater, no major problems occurred. For EPV values less than 10, however, the regression coefficients were biased in both positive and negative directions; the large sample variance estimates from the logistic model both overestimated and underestimated the sample variance of the regression coefficients; the 90% confidence limits about the estimated values did not have proper coverage; the Wald statistic was conservative under the null hypothesis; and paradoxical associations (significance in the wrong direction) were increased. Although other factors (such as the total number of events, or sample size) may influence the validity of the logistic model, our findings indicate that low EPV can lead to major problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
re完成签到,获得积分10
1秒前
Orange应助文艺的问寒采纳,获得10
1秒前
1秒前
科研通AI6应助无所谓的啦采纳,获得10
1秒前
丘比特应助无所谓的啦采纳,获得50
1秒前
wanci应助无所谓的啦采纳,获得10
1秒前
Jirobai发布了新的文献求助10
2秒前
2秒前
TT发布了新的文献求助10
2秒前
3秒前
4秒前
上官若男应助littlechy采纳,获得10
4秒前
larsy完成签到 ,获得积分10
4秒前
xhq204723完成签到,获得积分20
5秒前
zhuzhu发布了新的文献求助10
5秒前
斩荆披棘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
zcc1203完成签到,获得积分10
6秒前
6秒前
7秒前
re发布了新的文献求助10
7秒前
完美世界应助null采纳,获得10
7秒前
科研通AI6应助紧张的惜梦采纳,获得10
7秒前
7秒前
李健的小迷弟应助orange9采纳,获得10
8秒前
科研通AI6应助西予采纳,获得10
8秒前
科研通AI6应助维生素采纳,获得10
8秒前
研友_VZG7GZ应助max采纳,获得10
9秒前
9秒前
可爱的函函应助zhuzhu采纳,获得10
9秒前
勤奋大地发布了新的文献求助10
10秒前
10秒前
ZHONGJIAHAO发布了新的文献求助10
11秒前
JamesPei应助Jirobai采纳,获得10
11秒前
能干的人发布了新的文献求助50
12秒前
CATH发布了新的文献求助10
12秒前
爆米花应助77采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649224
求助须知:如何正确求助?哪些是违规求助? 4777640
关于积分的说明 15047109
捐赠科研通 4808179
什么是DOI,文献DOI怎么找? 2571280
邀请新用户注册赠送积分活动 1527831
关于科研通互助平台的介绍 1486710