克拉斯
癌症研究
RNA干扰
生物
癌症
癌基因
彪马
合成致死
突变体
核糖核酸
基因
突变
计算生物学
遗传学
细胞周期
作者
David A. Barbie,Pablo Tamayo,Jesse S. Boehm,So Young Kim,Susan E. Moody,Ian F. Dunn,Anna C. Schinzel,Péter Sandy,Etienne Meylan,Claudia Scholl,Stefan Fröhling,Edmond M. Chan,Martin L. Sos,Kathrin Michel,Craig H. Mermel,Serena J. Silver,Barbara A. Weir,Jan H. Reiling,Qing Sheng,Piyush B. Gupta
出处
期刊:Nature
[Springer Nature]
日期:2009-10-21
卷期号:462 (7269): 108-112
被引量:4022
摘要
The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkappaB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-kappaB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-kappaB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI