Automated Retrieval of CT Images of Liver Lesions on the Basis of Image Similarity: Method and Preliminary Results

医学 相似性(几何) 人工智能 基础(线性代数) 计算机视觉 图像检索 图像(数学) 模式识别(心理学) 放射科 核医学 数学 几何学 计算机科学
作者
Sandy Napel,Christopher F. Beaulieu,César Rodríguez,Jingyu Cui,Jiajing Xu,Ankit Gupta,Daniel Korenblum,Hayit Greenspan,Yongjun Ma,Daniel L. Rubin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:256 (1): 243-252 被引量:100
标识
DOI:10.1148/radiol.10091694
摘要

To develop a system to facilitate the retrieval of radiologic images that contain similar-appearing lesions and to perform a preliminary evaluation of this system with a database of computed tomographic (CT) images of the liver and an external standard of image similarity.Institutional review board approval was obtained for retrospective analysis of deidentified patient images. Thereafter, 30 portal venous phase CT images of the liver exhibiting one of three types of liver lesions (13 cysts, seven hemangiomas, 10 metastases) were selected. A radiologist used a controlled lexicon and a tool developed for complete and standardized description of lesions to identify and annotate each lesion with semantic features. In addition, this software automatically computed image features on the basis of image texture and boundary sharpness. Semantic and computer-generated features were weighted and combined into a feature vector representing each image. An independent reference standard was created for pairwise image similarity. This was used in a leave-one-out cross-validation to train weights that optimized the rankings of images in the database in terms of similarity to query images. Performance was evaluated by using precision-recall curves and normalized discounted cumulative gain (NDCG), a common measure for the usefulness of information retrieval.When used individually, groups of semantic, texture, and boundary features resulted in various levels of performance in retrieving relevant lesions. However, combining all features produced the best overall results. Mean precision was greater than 90% at all values of recall, and mean, best, and worst case retrieval accuracy was greater than 95%, 100%, and greater than 78%, respectively, with NDCG.Preliminary assessment of this approach shows excellent retrieval results for three types of liver lesions visible on portal venous CT images, warranting continued development and validation in a larger and more comprehensive database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
2秒前
PICC完成签到 ,获得积分10
2秒前
ybwei2008_163发布了新的文献求助10
3秒前
Lucas应助麦兜兜采纳,获得10
3秒前
3秒前
桐桐应助李兴采纳,获得10
3秒前
3秒前
lizhaonian发布了新的文献求助10
4秒前
5秒前
李明完成签到 ,获得积分10
5秒前
jorgan完成签到,获得积分10
9秒前
9秒前
橘子发布了新的文献求助50
9秒前
包容凌翠发布了新的文献求助10
10秒前
11秒前
赘婿应助冷傲的太英采纳,获得10
12秒前
12秒前
FartKing发布了新的文献求助10
12秒前
liberty完成签到,获得积分10
13秒前
MQ&FF完成签到,获得积分0
13秒前
EDTA完成签到,获得积分10
13秒前
舒服的灰狼完成签到,获得积分10
17秒前
xing发布了新的文献求助10
17秒前
18秒前
小马甲应助codwest采纳,获得10
18秒前
李兴发布了新的文献求助10
19秒前
冯婷完成签到 ,获得积分10
20秒前
JamesPei应助wan12138采纳,获得10
20秒前
FartKing完成签到,获得积分10
20秒前
包容凌翠完成签到,获得积分20
21秒前
sanyecai完成签到,获得积分10
22秒前
研友_nVNBVn发布了新的文献求助10
23秒前
在水一方应助lpx43采纳,获得10
23秒前
curtisness应助小白采纳,获得20
24秒前
24秒前
两栖玩家完成签到 ,获得积分10
26秒前
28秒前
licheng应助李成博采纳,获得10
28秒前
卓妮发布了新的文献求助10
28秒前
Meyako应助jias采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776757
求助须知:如何正确求助?哪些是违规求助? 4108458
关于积分的说明 12709133
捐赠科研通 3829877
什么是DOI,文献DOI怎么找? 2112710
邀请新用户注册赠送积分活动 1136508
关于科研通互助平台的介绍 1020314