分类
进化算法
算法
多目标优化
人口
遗传算法
帕累托原理
数学优化
计算机科学
时间复杂性
进化计算
计算
鉴定(生物学)
数学
生物
植物
社会学
人口学
标识
DOI:10.1109/tevc.2003.817234
摘要
The last decade has seen a surge of research activity on multiobjective optimization using evolutionary computation and a number of well performing algorithms have been published. The majority of these algorithms use fitness assignment based on Pareto-domination: Nondominated sorting, dominance counting, or identification of the nondominated solutions. The success of these algorithms indicates that this type of fitness is suitable for multiobjective problems, but so far the use of Pareto-based fitness has lead to program run times in O(GMN/sup 2/), where G is the number of generations, M is the number of objectives, and N is the population size. The N/sup 2/ factor should be reduced if possible, since it leads to long processing times for large population sizes. This paper presents a new and efficient algorithm for nondominated sorting, which can speed up the processing time of some multiobjective evolutionary algorithms (MOEAs) substantially. The new algorithm is incorporated into the nondominated sorting genetic algorithm II (NSGA-II) and reduces the overall run-time complexity of this algorithm to O(GN log/sup M-1/N), much faster than the O(GMN/sup 2/) complexity published by Deb et al. (2002). Experiments demonstrate that the improved version of the algorithm is indeed much faster than the previous one. The paper also points out that multiobjective EAs using fitness based on dominance counting and identification of nondominated solutions can be improved significantly in terms of running time by using efficient algorithms known from computer science instead of inefficient O(MN/sup 2/) algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI