变分不等式
数学
复合泊松过程
跳跃扩散
泊松分布
扩散过程
跳跃过程
动态规划
扩散
最优控制
数学优化
应用数学
脉冲控制
随机控制
贝尔曼方程
跳跃
数理经济学
泊松过程
计算机科学
创新扩散
统计
心理治疗师
物理
热力学
量子力学
知识管理
心理学
作者
Alain Bensoussan,R. H. Liu,Suresh Sethi
标识
DOI:10.1137/s0363012904443737
摘要
We prove that an $(s, S)$ policy is optimal in a continuous-review stochastic inventory model with a fixed ordering cost when the demand is a mixture of (i) a diffusion process and a compound Poisson process with exponentially distributed jump sizes, and (ii) a constant demand and a compound Poisson process. The proof uses the theory of impulse control. The Bellman equation of dynamic programming for such a problem reduces to a set of quasi-variational inequalities (QVI). An analytical study of the QVI leads to showing the existence of an optimal policy as well as the optimality of an $(s, S)$ policy. Finally, the combination of a diffusion and a general compound Poisson demand is not completely solved. We explain the difficulties and what remains open. We also provide a numerical examplefor the general case.
科研通智能强力驱动
Strongly Powered by AbleSci AI