Dynamic multi-channel metric network for joint pose-aware and identity-invariant facial expression recognition

计算机科学 模式识别(心理学) 人工智能 面部表情 过度拟合 卷积神经网络 不变(物理) 公制(单位) 姿势 嵌入 人工神经网络 数学 运营管理 数学物理 经济
作者
Yuanyuan Liu,Wei Dai,Fang Fang,Yongquan Chen,Rui Huang,Run Wang,Bo Wan
出处
期刊:Information Sciences [Elsevier BV]
卷期号:578: 195-213 被引量:39
标识
DOI:10.1016/j.ins.2021.07.034
摘要

Facial expression recognition (FER) is challenging because the appearance of an expression varies significantly depending on head pose and inter-subject characteristics. With existing techniques, it is often difficult to learn both pose-aware and identity-invariant representations of facial expressions effectively due to the complex distribution of intra-class variation and similarity caused by these two factors. In this study, we propose a dynamic multi-channel metric learning network for pose-aware and identity-invariant FER, called DML-Net, which can reduce the effects of pose and identity for robust FER performance. Specifically, DML-Net uses three parallel multi-channel convolutional networks to learn fused global and local features from different facial regions. Then it uses joint embedded feature learning to explore identity-invariant and pose-aware expression representations from fused region-based features in an embedding space. DML-Net is end-to-end trainable by minimizing deep multiple metric losses, FER loss, and pose estimation loss with dynamically learned loss weights, thereby suppressing overfitting and significantly improving recognition. We evaluate DML-Net on three widely-used multi-view facial expression datasets, namely, KDEF, BU-3DFE, and Multi-PIE, as well as a wild dataset SFEW2.0. Extensive experiments demonstrate that our approach outperforms several other popular methods with accuracies of 88.2% on KDEF, 83.5% on BU-3DFE, 93.5% on Multi-PIE, and 54.36% on SFEW.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助zzz采纳,获得10
1秒前
xdy完成签到 ,获得积分10
2秒前
和谐的柠檬完成签到,获得积分10
3秒前
xcky0917发布了新的文献求助10
4秒前
wanyanjin完成签到,获得积分10
4秒前
柔弱的绮菱完成签到,获得积分10
5秒前
东山发布了新的文献求助10
5秒前
深情安青应助BlingBling采纳,获得10
9秒前
xcky0917完成签到,获得积分10
10秒前
12秒前
个性松发布了新的文献求助10
15秒前
15秒前
暮渔木鱼发布了新的文献求助10
16秒前
Chen发布了新的文献求助10
18秒前
18秒前
21秒前
王三歲完成签到,获得积分10
22秒前
x1nger发布了新的文献求助10
24秒前
sudaxia100发布了新的文献求助10
24秒前
25秒前
28秒前
英姑应助stt1011采纳,获得10
30秒前
坦率的夜玉完成签到,获得积分10
30秒前
小白应助Woshikeyandawang采纳,获得20
31秒前
BlingBling发布了新的文献求助10
31秒前
yll完成签到,获得积分10
32秒前
孙燕应助企鹅乌云采纳,获得30
33秒前
soapffz完成签到,获得积分10
34秒前
大地发布了新的文献求助10
34秒前
小二郎应助pyrene采纳,获得10
36秒前
iNk应助王三歲采纳,获得10
37秒前
38秒前
东山完成签到,获得积分10
38秒前
八九驳回了pluto应助
38秒前
40秒前
43秒前
共享精神应助陈补天采纳,获得10
47秒前
qimingran发布了新的文献求助50
47秒前
赘婿应助YKL99采纳,获得30
48秒前
科研通AI5应助纯真如松采纳,获得10
50秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839884
求助须知:如何正确求助?哪些是违规求助? 3382134
关于积分的说明 10521516
捐赠科研通 3101562
什么是DOI,文献DOI怎么找? 1708143
邀请新用户注册赠送积分活动 822228
科研通“疑难数据库(出版商)”最低求助积分说明 773208