Boosting carrier transfer at flexible schottky junctions with moisture: A strategy for high-performance wearable direct-current nanogenerators

材料科学 纳米发生器 肖特基二极管 光电子学 石墨烯 纳米技术 双极扩散 半导体 无线电源传输 直流电 肖特基势垒 电气工程 压电 电压 工程类 物理 复合材料 等离子体 二极管 量子力学 电磁线圈
作者
Jun Chen,Peng He,Tao Huang,Denghui Zhang,Gang Wang,Siwei Yang,Xiaoming Xie,Guqiao Ding
出处
期刊:Nano Energy [Elsevier BV]
卷期号:90: 106593-106593 被引量:21
标识
DOI:10.1016/j.nanoen.2021.106593
摘要

The development of high-performance direct-current (DC) nanogenerators with good flexibility in wearable devices has always been a major challenge. A potential solution is developing the flexible Schottky nanogenerators to output DC power by introducing Schottky interfaces between metals and flexible semiconductors to directionally transfer the mechanically excited carriers. However, the DC output of existing flexible Schottky nanogenerators is limited by the moderate carrier transfer at the interface. Herein, we propose the utilization of moisture-induced electric field to boost carrier transfer at Schottky interface. This strategy is demonstrated viable in a flexible Schottky junctions comprising of an asymmetric graphene oxide (aGO) layer and an aluminum foil, which works by a new mechanism and outperforms existing flexible semiconductor-based DC nanogenerators by several orders of magnitude in both current density (81.06 A m −2 ) and power density (24.08 W m −2 ) and the mechanic-to-electricity conversion efficiency can achieve to 2.29%. In addition, because the nanogenerator can respond to both moisture and mechanical changes, it can also serve as a self-powered sensor to monitor human respiratory and body surface sweat levels simultaneously, so as to guide people in training more scientifically. This strategy would initiate a direction of next-generation wearable nanogenerators and sensors. Proton migration induced by moisture in asymmetric-structure GO results in a built-in electric field that has been used to boost carrier transfer at the Schottky interface and improve the power generation performance of the nanogenerator. The nanogenerators achieve a good flexibility and record-high DC output. The nanogenerators can not only convert mechanical energy into electricity, but monitor the sweat levels and respiratory system of humans simultaneously. • Moisture-induced electric field was utilized to boost carrier transfer at flexible DC Schottky junctions. • The flexible DC Schottky nanogenerator comprising an asymmetric graphene oxide layer and an aluminum is designed and prepared. • The Nanogenerators output a current density of 81.06 A m −2 , power density of 24.08 W m −2 , and conversion efficiency of 2.29%. • Self-powered sensors based on this nanogenerator can simultaneously detect sweat levels and the respiratory system of humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清脆的凝竹完成签到,获得积分10
1秒前
1秒前
小洲冲冲冲完成签到,获得积分10
1秒前
1秒前
2秒前
今后应助re采纳,获得10
2秒前
4秒前
Ciro发布了新的文献求助30
5秒前
5秒前
之组长了发布了新的文献求助10
5秒前
打打应助cryscilla采纳,获得10
5秒前
zz的奇妙冒险完成签到,获得积分10
6秒前
啦啦啦啦发布了新的文献求助10
7秒前
7秒前
卡卡光波完成签到,获得积分10
7秒前
8秒前
8秒前
kikiki发布了新的文献求助10
10秒前
12秒前
汉堡包应助沙耶采纳,获得10
14秒前
江城一霸发布了新的文献求助30
14秒前
忧伤的丁丁完成签到,获得积分10
15秒前
果咩发布了新的文献求助10
15秒前
冰魂应助啦啦啦啦采纳,获得10
16秒前
李健应助狂暴的蜗牛0713采纳,获得10
16秒前
余生9979完成签到 ,获得积分10
16秒前
CodeCraft应助kikiki采纳,获得10
17秒前
Jasper应助猪猪hero采纳,获得30
18秒前
19秒前
21秒前
流氓恐龙发布了新的文献求助10
24秒前
25秒前
猪猪hero发布了新的文献求助10
26秒前
我是老大应助sunny采纳,获得10
28秒前
29秒前
gmchen完成签到,获得积分10
29秒前
cryscilla完成签到,获得积分10
29秒前
PSCs发布了新的文献求助10
30秒前
英姑应助Cold采纳,获得10
30秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824320
求助须知:如何正确求助?哪些是违规求助? 3366627
关于积分的说明 10441642
捐赠科研通 3085849
什么是DOI,文献DOI怎么找? 1697615
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769640