Fully Automated Classification Method for Crops Based on Spatiotemporal Deep-Learning Fusion Technology

人工智能 深度学习 计算机科学 卷积神经网络 机器学习 模式识别(心理学) 人工神经网络 上下文图像分类 数据挖掘 图像(数学)
作者
Shuting Yang,Lingjia Gu,Xiaofeng Li,Fang Gao,Tao Jiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:11
标识
DOI:10.1109/tgrs.2021.3113014
摘要

Accurate and timely crop mapping is essential for agricultural applications, and deep-learning methods have been applied on a range of remotely sensed data sources to classify crops. In this article, we develop a novel crop classification method based on spatiotemporal deep-learning fusion technology. However, for crop mapping, the selection and labeling of training samples is expensive and time consuming. Therefore, we propose a fully automated training-sample-selection method. First, we design the method according to image processing algorithms and the concept of a sliding window. Second, we develop the Geo-3D convolutional neural network (CNN) and Geo-Conv1D for crop classification using time-series Sentinel-2 imagery. Specifically, we integrate geographic information of crops into the structure of deep-learning networks. Finally, we apply an active learning strategy to integrate the classification advantages of Geo-3D CNN and Geo-Conv1D. Experiments conducted in Northeast China show that the proposed sampling method can reliably provide and label a large number of samples and achieve satisfactory results for different deep-learning networks. Based on the automatic selection and labeling of training samples, the crop classification method based on spatiotemporal deep-learning fusion technology can achieve the highest overall accuracy (OA) with approximately 92.50% as compared with Geo-Conv1D (91.89%) and Geo-3D CNN (91.27%) in the three study areas, indicating that the proposed method is effective and efficient in multi-temporal crop classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
56789完成签到,获得积分20
2秒前
朱南晴完成签到,获得积分10
4秒前
4秒前
诗筠完成签到 ,获得积分0
4秒前
5秒前
脑洞疼应助小卢采纳,获得10
5秒前
何公主完成签到,获得积分10
5秒前
rputation完成签到 ,获得积分10
9秒前
wanci应助andy采纳,获得10
10秒前
10秒前
飞鸟完成签到,获得积分10
10秒前
欣喜眼神发布了新的文献求助10
11秒前
12秒前
华仔应助LX采纳,获得30
12秒前
NexusExplorer应助ada采纳,获得10
13秒前
勤奋的小懒虫完成签到 ,获得积分10
14秒前
小马甲应助hana采纳,获得10
14秒前
15秒前
喜洋洋发布了新的文献求助10
16秒前
ding应助依亦然采纳,获得10
17秒前
简单水蓉发布了新的文献求助30
17秒前
乐观小之应助欣喜眼神采纳,获得10
17秒前
18秒前
饱满翠绿发布了新的文献求助10
19秒前
XXYY发布了新的文献求助30
19秒前
科研通AI5应助勤劳的筝采纳,获得10
19秒前
whisper完成签到,获得积分20
21秒前
21秒前
梦溪完成签到 ,获得积分10
23秒前
英姑应助Conccuc采纳,获得10
23秒前
无情的匪完成签到 ,获得积分10
24秒前
25秒前
26秒前
26秒前
领导范儿应助123采纳,获得10
26秒前
26秒前
pannyfeng完成签到,获得积分10
26秒前
喃喃发布了新的文献求助10
28秒前
嘀嘀嘀发布了新的文献求助10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243