Incentive Mechanisms for Federated Learning: From Economic and Game Theoretic Perspective

激励 计算机科学 原始数据 过程(计算) 博弈论 机构设计 透视图(图形) 资源(消歧) 数据科学 知识管理 人工智能 微观经济学 经济 计算机网络 操作系统 程序设计语言
作者
Xuezhen Tu,Kun Zhu,Nguyen Cong Luong,Dusit Niyato,Yang Zhang,Juan Li
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 1566-1593 被引量:105
标识
DOI:10.1109/tccn.2022.3177522
摘要

Federated learning (FL) becomes popular and has shown great potentials in training large-scale machine learning (ML) models without exposing the owners' raw data. In FL, the data owners can train ML models based on their local data and only send the model updates rather than raw data to the model owner for aggregation. To improve learning performance in terms of model accuracy and training completion time, it is essential to recruit sufficient participants. Meanwhile, the data owners are rational and may be unwilling to participate in the collaborative learning process due to the resource consumption. To address the issues, there have been various works recently proposed to motivate the data owners to contribute their resources. In this paper, we provide a comprehensive review for the economic and game theoretic approaches proposed in the literature to design various schemes for incentivizing data owners to participate in FL training process. In particular, we first present the fundamentals and background of FL, economic theories commonly used in incentive mechanism design. Then, we review applications of game theory and economic approaches applied for incentive mechanisms design of FL. Finally, we highlight some open issues and future research directions concerning incentive mechanism design of FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoze发布了新的文献求助10
刚刚
llr发布了新的文献求助10
1秒前
2秒前
烟花应助清欢采纳,获得10
2秒前
汉堡包应助司空智宸采纳,获得10
2秒前
Orange应助清爽的新瑶采纳,获得10
2秒前
小姜发布了新的文献求助10
2秒前
wsy发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
jingmishensi发布了新的文献求助10
2秒前
格格巫发布了新的文献求助10
2秒前
眼睛大的尔竹完成签到 ,获得积分10
3秒前
3秒前
自然的霸发布了新的文献求助10
3秒前
3秒前
Akim应助熬夜拜拜采纳,获得10
3秒前
3秒前
英姑应助Zex采纳,获得10
4秒前
4秒前
4秒前
4秒前
烟花应助你好呀采纳,获得20
4秒前
xiaoyu应助壹贰采纳,获得20
5秒前
上官若男应助谢青采纳,获得30
5秒前
z'x完成签到,获得积分10
5秒前
6秒前
6秒前
ding应助yanyan采纳,获得10
6秒前
CodeCraft应助684654684采纳,获得10
6秒前
渡尘完成签到,获得积分10
6秒前
uraylong发布了新的文献求助10
7秒前
screct完成签到,获得积分10
7秒前
7秒前
小姜完成签到,获得积分10
8秒前
希望天下0贩的0应助桃子e采纳,获得10
8秒前
8秒前
FashionBoy应助llwxx采纳,获得10
8秒前
苏铭完成签到,获得积分10
8秒前
fang发布了新的文献求助10
8秒前
廿一雨完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4701564
求助须知:如何正确求助?哪些是违规求助? 4069790
关于积分的说明 12583481
捐赠科研通 3769960
什么是DOI,文献DOI怎么找? 2082004
邀请新用户注册赠送积分活动 1109616
科研通“疑难数据库(出版商)”最低求助积分说明 987822