DeepGeoMap

高光谱成像 人工智能 卷积神经网络 Softmax函数 计算机科学 过度拟合 模式识别(心理学) 深度学习 上下文图像分类 空间分析 人工神经网络 遥感 机器学习 地理 图像(数学)
作者
Helge Leoard Carl Dämpfling
出处
期刊:University of Potsdam - publish.UP 被引量:1
标识
DOI:10.25932/publishup-52057
摘要

In recent years, deep learning improved the way remote sensing data is processed. The classification of hyperspectral data is no exception. 2D or 3D convolutional neural networks have outperformed classical algorithms on hyperspectral image classification in many cases. However, geological hyperspectral image classification includes several challenges, often including spatially more complex objects than found in other disciplines of hyperspectral imaging that have more spatially similar objects (e.g., as in industrial applications, aerial urban- or farming land cover types). In geological hyperspectral image classification, classical algorithms that focus on the spectral domain still often show higher accuracy, more sensible results, or flexibility due to spatial information independence. In the framework of this thesis, inspired by classical machine learning algorithms that focus on the spectral domain like the binary feature fitting- (BFF) and the EnGeoMap algorithm, the author of this thesis proposes, develops, tests, and discusses a novel, spectrally focused, spatial information independent, deep multi-layer convolutional neural network, named 'DeepGeoMap’, for hyperspectral geological data classification. More specifically, the architecture of DeepGeoMap uses a sequential series of different 1D convolutional neural networks layers and fully connected dense layers and utilizes rectified linear unit and softmax activation, 1D max and 1D global average pooling layers, additional dropout to prevent overfitting, and a categorical cross-entropy loss function with Adam gradient descent optimization. DeepGeoMap was realized using Python 3.7 and the machine and deep learning interface TensorFlow with graphical processing unit (GPU) acceleration. This 1D spectrally focused architecture allows DeepGeoMap models to be trained with hyperspectral laboratory image data of geochemically validated samples (e.g., ground truth samples for aerial or mine face images) and then use this laboratory trained model to classify other or larger scenes, similar to classical algorithms that use a spectral library of validated samples for image classification. The classification capabilities of DeepGeoMap have been tested using two geological hyperspectral image data sets. Both are geochemically validated hyperspectral data sets one based on iron ore and the other based on copper ore samples. The copper ore laboratory data set was used to train a DeepGeoMap model for the classification and analysis of a larger mine face scene within the Republic of Cyprus, where the samples originated from. Additionally, a benchmark satellite-based dataset, the Indian Pines data set, was used for training and testing. The classification accuracy of DeepGeoMap was compared to classical algorithms and other convolutional neural networks. It was shown that DeepGeoMap could achieve higher accuracies and outperform these classical algorithms and other neural networks in the geological hyperspectral image classification test cases. The spectral focus of DeepGeoMap was found to be the most considerable advantage compared to spectral-spatial classifiers like 2D or 3D neural networks. This enables DeepGeoMap models to train data independently of different spatial entities, shapes, and/or resolutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研通AI6应助陈涛采纳,获得10
1秒前
传奇3应助刘天歌采纳,获得10
1秒前
1秒前
一切都会好起来的完成签到,获得积分10
2秒前
美丽心情完成签到,获得积分10
2秒前
lu1020发布了新的文献求助30
2秒前
科研通AI2S应助majf采纳,获得10
2秒前
Ulrica完成签到,获得积分10
3秒前
晚秋发布了新的文献求助10
3秒前
marco完成签到 ,获得积分10
4秒前
4秒前
sunny完成签到,获得积分10
4秒前
Xmy发布了新的文献求助10
5秒前
5秒前
MaskRuin完成签到,获得积分10
5秒前
6秒前
Ava应助猫猫球拯救世界采纳,获得30
6秒前
液晶屏99完成签到,获得积分10
7秒前
半生瓜完成签到 ,获得积分10
8秒前
火星上的一斩完成签到 ,获得积分10
8秒前
muzi完成签到,获得积分10
9秒前
舒心聪展完成签到,获得积分10
9秒前
10秒前
Scss完成签到,获得积分10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
刘1完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
临床小白发布了新的文献求助10
10秒前
寻找组织应助科研通管家采纳,获得20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
寻找组织应助科研通管家采纳,获得20
10秒前
wanci应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
yang应助科研通管家采纳,获得10
10秒前
summer应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498807
求助须知:如何正确求助?哪些是违规求助? 4595945
关于积分的说明 14450883
捐赠科研通 4528942
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438682