Estimating concentrations for particle and gases in a mechanically ventilated building in Hong Kong: multivariate method and machine learning

计算机科学 统计 人工智能 环境科学 机器学习 多元统计 预测建模
作者
Wenwei Che,Alison T.Y. Li,Alexis K.H. Lau
出处
期刊:Air Quality, Atmosphere & Health [Springer Science+Business Media]
卷期号:: 1-18
标识
DOI:10.1007/s11869-021-01093-9
摘要

Lack of characterization of indoor pollutant concentrations has been identified as a key barrier for exposure and health estimates. In this study, a field campaign was conducted to measure indoor concentrations of PM1, PM2.5, PM10, CO, and NO2 in a mechanically ventilated building. Statistical method using multivariate linear regression (MLR) and machine learning using random forest (RF) were used and compared to quantify variations in observed concentrations and were then used to predict indoor concentrations for selected pollutants. The two methods were consistent in identifying major predictors for each pollutant. Outdoor particles were the single largest predictors found for PM1 and PM2.5, while indoor environment and occupant-related variables were dominant predictors for PM10, CO, and NO2 in the selected mall. Based on MLR models, outdoor PM accounted for 91%, 64%, and 25% of variations in indoor PM1, PM2.5, and PM10 during opening hours. More than 30% of indoor CO variations were related to time-dependent activities. Nearly 50% of the indoor NO2 variations were explained by temperature and relative humidity. Both models are useful in predicting indoor concentrations. In the tenfold cross validation, RF models showed high prediction capability for PM1 (R2 > 0.9) and moderate (R2: 0.5 ~ 0.7) for the other four pollutants in both periods except for PM10 during non-opening hours (R2 = 0.3). MLR models exhibited comparable prediction power for PM1 and PM2.5, but generally lower for PM10 and gases. Availability of parameter information in modern cities facilitates the application of such models on large scale, based on proper validation, for better characterizing of indoor air quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助负责的方盒采纳,获得10
刚刚
刚刚
1秒前
5秒前
科研通AI5应助Rain采纳,获得10
5秒前
5秒前
kingyo发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
12345发布了新的文献求助10
7秒前
8秒前
张笑柔完成签到,获得积分10
8秒前
无花果应助负责的方盒采纳,获得10
10秒前
Orange应助biozj采纳,获得10
10秒前
科研通AI6应助我爱看文献采纳,获得10
11秒前
11秒前
axic发布了新的文献求助10
11秒前
隐形萃完成签到 ,获得积分10
11秒前
田様应助ggst采纳,获得10
12秒前
12秒前
无极微光发布了新的文献求助10
13秒前
捌柒陆完成签到,获得积分10
14秒前
Zuix给Zuix的求助进行了留言
14秒前
yun发布了新的文献求助10
14秒前
花花发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
我的论文一下子就写出来了耶完成签到 ,获得积分20
15秒前
16秒前
17秒前
斯文败类应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087017
求助须知:如何正确求助?哪些是违规求助? 4302540
关于积分的说明 13408011
捐赠科研通 4127749
什么是DOI,文献DOI怎么找? 2260458
邀请新用户注册赠送积分活动 1264739
关于科研通互助平台的介绍 1198892