电解质
电化学
大规模运输
材料科学
电极
传质
扩散
气体扩散电极
催化作用
三相边界
气体扩散
化学工程
电化学能量转换
边界层
分析化学(期刊)
化学
热力学
色谱法
工程物理
物理化学
固体氧化物燃料电池
生物化学
物理
工程类
作者
Thomas Moore,Xiaoxing Xia,Sarah E. Baker,Eric B. Duoss,V. A. Beck
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-09-16
卷期号:6 (10): 3600-3606
被引量:49
标识
DOI:10.1021/acsenergylett.1c01513
摘要
Gas diffusion electrodes (GDEs) have shown promising performance for the electrochemical reduction of CO2 (CO2R). In this study, a resolved, pore scale model of electrochemical reduction of CO2 within a liquid-filled catalyst layer is developed. Three CO2 mass transport regimes are identified in which the CO2 penetration depth is controlled by CO2 consumption in the electrolyte, CO2 conversion along the solid-electrolyte double-phase boundaries (DPBs), and CO2 conversion concentrated around the gas–solid–electrolyte triple-phase boundaries (TPBs). While it is possible for CO2R to be localized around the TPBs, in systems with submicron pore radii operating at <1 A cm–2 CO2R will be distributed across the DPBs within the catalyst layer. This validates the assumption of pore-scale uniformity implicit in popular, volume-averaged GDE models. The CO2 conversion efficiency depends strongly on the governing mass transport regime, and operational-phase diagrams are constructed to guide the catalyst layer design.
科研通智能强力驱动
Strongly Powered by AbleSci AI