亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Causal Intervention for Leveraging Popularity Bias in Recommendation

人气 计算机科学 推论 杠杆(统计) 推荐系统 因果推理 透视图(图形) 机器学习 人工智能 数据挖掘 计量经济学 心理学 数学 社会心理学
作者
Yang Zhang,Fuli Feng,Xiangnan He,Tianxin Wei,Chonggang Song,Guohui Ling,Yongdong Zhang
标识
DOI:10.1145/3404835.3462875
摘要

Recommender system usually faces popularity bias issues: from the data perspective, items exhibit uneven (long-tail) distribution on the interaction frequency; from the method perspective, collaborative filtering methods are prone to amplify the bias by over-recommending popular items. It is undoubtedly critical to consider popularity bias in recommender systems, and existing work mainly eliminates the bias effect. However, we argue that not all biases in the data are bad -- some items demonstrate higher popularity because of their better intrinsic quality. Blindly pursuing unbiased learning may remove the beneficial patterns in the data, degrading the recommendation accuracy and user satisfaction. This work studies an unexplored problem in recommendation -- how to leverage popularity bias to improve the recommendation accuracy. The key lies in two aspects: how to remove the bad impact of popularity bias during training, and how to inject the desired popularity bias in the inference stage that generates top-K recommendations. This questions the causal mechanism of the recommendation generation process. Along this line, we find that item popularity plays the role of confounder between the exposed items and the observed interactions, causing the bad effect of bias amplification. To achieve our goal, we propose a new training and inference paradigm for recommendation named Popularity-bias Deconfounding and Adjusting (PDA). It removes the confounding popularity bias in model training and adjusts the recommendation score with desired popularity bias via causal intervention. We demonstrate the new paradigm on latent factor model and perform extensive experiments on three real-world datasets. Empirical studies validate that the deconfounded training is helpful to discover user real interests and the inference adjustment with popularity bias could further improve the recommendation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrele应助PPD采纳,获得10
34秒前
浮游应助PPD采纳,获得10
34秒前
科研通AI2S应助PPD采纳,获得10
35秒前
浮游应助PPD采纳,获得10
35秒前
善学以致用应助PPD采纳,获得10
35秒前
小二郎应助PPD采纳,获得10
35秒前
科研通AI5应助PPD采纳,获得10
35秒前
科研通AI5应助PPD采纳,获得10
35秒前
科研通AI5应助PPD采纳,获得10
35秒前
液晶屏99完成签到,获得积分10
37秒前
司空博涛发布了新的文献求助10
38秒前
WerWu完成签到,获得积分10
40秒前
58秒前
58秒前
58秒前
58秒前
58秒前
1分钟前
1分钟前
aikeyan完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
归尘发布了新的文献求助10
2分钟前
2分钟前
Marciu33发布了新的文献求助10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
小马甲应助Marciu33采纳,获得10
2分钟前
2分钟前
归尘发布了新的文献求助10
2分钟前
2分钟前
Ava应助李小猫采纳,获得10
2分钟前
2分钟前
2分钟前
李小猫完成签到,获得积分10
2分钟前
李小猫发布了新的文献求助10
2分钟前
夏花般灿烂完成签到,获得积分20
2分钟前
斯文败类应助lourahan采纳,获得10
2分钟前
鳄鱼不做饿梦完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5091532
求助须知:如何正确求助?哪些是违规求助? 4305843
关于积分的说明 13416172
捐赠科研通 4131582
什么是DOI,文献DOI怎么找? 2263233
邀请新用户注册赠送积分活动 1267008
关于科研通互助平台的介绍 1202201