Strip Hardness Prediction in Continuous Annealing Using Multiobjective Sparse Nonlinear Ensemble Learning With Evolutionary Feature Selection

特征选择 集成学习 非线性系统 稳健性(进化) 人工智能 集合预报 机器学习 进化算法 计算机科学 模拟退火 模式识别(心理学) 生物化学 化学 物理 量子力学 基因
作者
Xianpeng Wang,Yao Wang,Lixin Tang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2397-2411 被引量:21
标识
DOI:10.1109/tase.2021.3083670
摘要

In the iron and steel industry, the hardness of steel strips is one of the key performance indicators to evaluate strip quality and guide production for the continuous annealing production line (CAPL). However, the hardness cannot be measured online in the actual production process. Consequently, the precise prediction of the strip hardness based on practical data becomes one of the key tasks during production. In this article, a multiobjective sparse nonlinear ensemble learning with evolutionary feature selection (MOSNE-EFS) method is proposed, which is data-driven modeling of the soft sensor. The method mainly consists of two stages: 1) the construction of individual learners based on multiobjective feature selection learning (MOFSL) and 2) the selection and ensemble of individual learners based on sparse nonlinear ensemble learning via differential evolution (SNEL-DE). The final ensemble model obtained by SNEL-DE is used as the prediction model for strip hardness in CAPL. The proposed method is evaluated with industrial production data. Experimental results indicate that the two strategies, i.e., evolutionary feature selection and sparse nonlinear ensemble, are effective in improving the accuracy and robustness of the prediction model, and further comparison results demonstrate the superiority of the MOSNE-EFS model over the other existing methods. Note to Practitioners —Many quality metrics in the iron and steel industry cannot be online checked, which causes great difficulties in process monitoring, control, and operation optimization. The proposed multiobjective sparse nonlinear ensemble learning with evolutionary feature selection method can help practitioners to construct quality prediction models of many other similar production lines, such as hot rolling and cold rolling, and thus, better process monitoring, control, and optimization of product quality can be achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奇闻趣事发布了新的文献求助30
1秒前
欢呼凡英发布了新的文献求助10
4秒前
Chara_kara完成签到,获得积分10
4秒前
5秒前
ewmmel发布了新的文献求助10
5秒前
完美世界应助儒雅斩采纳,获得10
5秒前
wzh发布了新的文献求助10
6秒前
lxy发布了新的文献求助30
6秒前
Chara_kara发布了新的文献求助10
6秒前
健忘远山发布了新的文献求助10
8秒前
9秒前
科研通AI5应助清水采纳,获得10
9秒前
万能图书馆应助wzh采纳,获得10
10秒前
kelexh发布了新的文献求助10
11秒前
科研通AI5应助叶文言采纳,获得10
11秒前
爆米花应助雪白卿采纳,获得10
12秒前
he完成签到,获得积分10
14秒前
Enso发布了新的文献求助20
14秒前
咳咳咳完成签到,获得积分0
15秒前
zuolan发布了新的文献求助10
15秒前
17秒前
儒雅斩发布了新的文献求助20
17秒前
QC完成签到,获得积分10
19秒前
19秒前
zzzz发布了新的文献求助10
20秒前
20秒前
21秒前
打打应助健忘远山采纳,获得10
21秒前
赘婿应助lxy采纳,获得10
21秒前
22秒前
Corn_Dog发布了新的文献求助10
23秒前
斯寜应助应万言采纳,获得10
23秒前
Jeffery发布了新的文献求助10
23秒前
欢呼凡英完成签到,获得积分10
24秒前
Harmonie完成签到,获得积分10
24秒前
25秒前
陈棋清发布了新的文献求助10
25秒前
雪白卿发布了新的文献求助10
26秒前
叶文言发布了新的文献求助10
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
幼儿游戏与指导(第二版) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833490
求助须知:如何正确求助?哪些是违规求助? 3375907
关于积分的说明 10491106
捐赠科研通 3095517
什么是DOI,文献DOI怎么找? 1704408
邀请新用户注册赠送积分活动 820033
科研通“疑难数据库(出版商)”最低求助积分说明 771721