Structure and performance of fully connected neural networks: Emerging complex network properties

初始化 中心性 计算机科学 人工神经网络 人工智能 深层神经网络 领域(数学分析) 复杂网络 航程(航空) 拓扑(电路) 机器学习 数学 数学分析 材料科学 组合数学 万维网 复合材料 程序设计语言
作者
Leonardo Scabini,Odemir Martinez Bruno
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:615: 128585-128585 被引量:35
标识
DOI:10.1016/j.physa.2023.128585
摘要

Understanding the behavior of Artificial Neural Networks is one of the main topics in the field recently, as black-box approaches have become usual since the widespread of deep learning. Such high-dimensional models may manifest instabilities and weird properties that resemble complex systems. Therefore, we propose Complex Network (CN) techniques to analyze the structure and performance of fully connected neural networks. For that, we build a dataset with 4 thousand models (varying the initialization seed) and their respective CN properties. This is the first work to explore the CN properties of an ample number of fully connected networks accounting for the variance caused by random weight initialization. The networks are trained in a supervised classification setup considering four vision benchmarks and then approached as a weighted and undirected graph of neurons and synapses (learned weights). Results show that neuronal centrality is highly correlated to network classification performance. We also propose the concept of Bag-Of-Neurons (BoN), a CN-based approach for finding topological signatures linking similar neurons. Results suggest that six neuronal types emerge in such networks, independently of the target domain, and are distributed differently according to classification accuracy. We also tackle specific CN properties related to performance, such as higher subgraph centrality on lower-performing models. Our findings suggest that CN properties play a critical role in the performance of fully connected neural networks, with topological patterns emerging independently on a wide range of models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸楷瑞完成签到,获得积分10
刚刚
桐桐应助Magali采纳,获得30
1秒前
jawa完成签到 ,获得积分10
3秒前
小圭发布了新的文献求助10
5秒前
橙子abcy完成签到,获得积分10
7秒前
YANGLan完成签到,获得积分10
7秒前
8秒前
9秒前
lidifei完成签到,获得积分10
10秒前
11秒前
day完成签到,获得积分10
11秒前
曾经白亦完成签到 ,获得积分10
13秒前
JJ20发布了新的文献求助20
13秒前
无名花生完成签到 ,获得积分0
13秒前
dingding发布了新的文献求助10
14秒前
孙淳发布了新的文献求助100
14秒前
艳艳宝完成签到 ,获得积分10
14秒前
飘逸楷瑞发布了新的文献求助10
14秒前
FeiBai发布了新的文献求助10
16秒前
16秒前
乔达摩悉达多完成签到 ,获得积分10
17秒前
17秒前
科研通AI5应助懂得瞧采纳,获得10
19秒前
19秒前
小天才应助Rita采纳,获得10
19秒前
打打应助罗拉采纳,获得10
19秒前
小圭完成签到,获得积分10
19秒前
20秒前
21秒前
lmm发布了新的文献求助10
21秒前
lihuachen91发布了新的文献求助10
22秒前
22秒前
23秒前
优雅含灵完成签到 ,获得积分10
25秒前
闪闪的梦柏完成签到 ,获得积分10
25秒前
yesiyan完成签到,获得积分10
25秒前
25秒前
秦宇麒发布了新的文献求助10
26秒前
orixero应助lihuachen91采纳,获得10
27秒前
lmm完成签到,获得积分10
27秒前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4390034
求助须知:如何正确求助?哪些是违规求助? 3881049
关于积分的说明 12087834
捐赠科研通 3524958
什么是DOI,文献DOI怎么找? 1934268
邀请新用户注册赠送积分活动 975249
科研通“疑难数据库(出版商)”最低求助积分说明 873103