Evidence for 28 genetic disorders discovered by combining healthcare and research data

基因 外显子组测序 遗传学 生物 外显子组 表型
作者
Joanna Kaplanis,Kaitlin E. Samocha,Laurens Wiel,Zhancheng Zhang,Kevin J. Arvai,Ruth Y. Eberhardt,Giuseppe Gallone,Stefan H. Lelieveld,Hilary C. Martin,Jeremy F. McRae,Patrick Short,Rebecca I. Torene,Elke de Boer,Petr Danecek,Eugene J. Gardner,Ni Huang,Jenny Lord,Iñigo Martincorena,Rolph Pfundt,Margot R.F. Reijnders
出处
期刊:Nature [Springer Nature]
卷期号:586 (7831): 757-762 被引量:625
标识
DOI:10.1038/s41586-020-2832-5
摘要

De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent–offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders. By integrating healthcare and exome-sequencing data from parent–offspring trios of patients with developmental disorders, 28 genes that had not previously been associated with developmental disorders were identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助yao采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
Guko发布了新的文献求助10
1秒前
1秒前
奋斗书白完成签到,获得积分10
1秒前
隐形曼青应助行走的鱼采纳,获得10
1秒前
Guko发布了新的文献求助10
1秒前
Guko发布了新的文献求助10
1秒前
1秒前
1秒前
三岁发布了新的文献求助10
2秒前
2秒前
斯文败类应助屾哥采纳,获得10
2秒前
Wefaily发布了新的文献求助20
2秒前
000发布了新的文献求助10
2秒前
swj发布了新的文献求助10
2秒前
活力顿阿雪完成签到,获得积分10
2秒前
Guko发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
爆米花应助wdb1816采纳,获得10
3秒前
易点邦应助liuziyu采纳,获得50
3秒前
3秒前
xsxakn完成签到,获得积分10
3秒前
4秒前
空白完成签到,获得积分10
4秒前
橙哈哈发布了新的文献求助10
4秒前
4秒前
4秒前
搞学术的成功女人完成签到,获得积分10
4秒前
852应助chao采纳,获得10
4秒前
云游归尘发布了新的文献求助10
4秒前
充电宝应助点凌蝶采纳,获得10
4秒前
Guko发布了新的文献求助10
5秒前
Guko发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711378
求助须知:如何正确求助?哪些是违规求助? 5203436
关于积分的说明 15264067
捐赠科研通 4863675
什么是DOI,文献DOI怎么找? 2610868
邀请新用户注册赠送积分活动 1561184
关于科研通互助平台的介绍 1518621