Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules

急诊分诊台 医学 人工智能 置信区间 急诊科 机器学习 临床决策支持系统 医学诊断 决策支持系统 数据挖掘 自然语言处理 计算机科学 医疗急救 内科学 放射科 精神科
作者
Dennis Shung,Cynthia Tsay,Loren Laine,David Chang,Fan Li,Prem Thomas,Caitlin Partridge,Michael Simonov,Allen Hsiao,J. Kenneth Tay,Richard A. Taylor
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:36 (6): 1590-1597 被引量:12
标识
DOI:10.1111/jgh.15313
摘要

Guidelines recommend risk stratification scores in patients presenting with gastrointestinal bleeding (GIB), but such scores are uncommonly employed in practice. Automation and deployment of risk stratification scores in real time within electronic health records (EHRs) would overcome a major impediment. This requires an automated mechanism to accurately identify ("phenotype") patients with GIB at the time of presentation. The goal is to identify patients with acute GIB by developing and evaluating EHR-based phenotyping algorithms for emergency department (ED) patients.We specified criteria using structured data elements to create rules for identifying patients and also developed multiple natural language processing (NLP)-based approaches for automated phenotyping of patients, tested them with tenfold cross-validation for 10 iterations (n = 7144) and external validation (n = 2988) and compared them with a standard method to identify patient conditions, the Systematized Nomenclature of Medicine. The gold standard for GIB diagnosis was the independent dual manual review of medical records. The primary outcome was the positive predictive value.A decision rule using GIB-specific terms from ED triage and ED review-of-systems assessment performed better than the Systematized Nomenclature of Medicine on internal validation and external validation (positive predictive value = 85% confidence interval:83%-87% vs 69% confidence interval:66%-72%; P < 0.001). The syntax-based NLP algorithm and Bidirectional Encoder Representation from Transformers neural network-based NLP algorithm had similar performance to the structured-data fields decision rule.An automated decision rule employing GIB-specific triage and review-of-systems terms can be used to trigger EHR-based deployment of risk stratification models to guide clinical decision making in real time for patients with acute GIB presenting to the ED.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和尘同光完成签到,获得积分10
2秒前
小章鱼发布了新的文献求助10
3秒前
wtbxsjy发布了新的文献求助30
3秒前
3秒前
Sci完成签到,获得积分10
3秒前
香蕉觅云应助朱灭龙采纳,获得10
3秒前
科目三应助紫薯球采纳,获得10
4秒前
大神水瓶座完成签到,获得积分10
5秒前
CY发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
賢様666完成签到,获得积分10
9秒前
cookie486发布了新的文献求助10
13秒前
suodeheng完成签到,获得积分10
14秒前
淡然寒蕾完成签到,获得积分10
15秒前
18秒前
腾腾完成签到 ,获得积分10
19秒前
老虎皮完成签到,获得积分10
19秒前
19秒前
wtbxsjy完成签到,获得积分10
20秒前
20秒前
朱灭龙发布了新的文献求助10
22秒前
坦率的尔丝完成签到,获得积分10
23秒前
老实易蓉应助迅速海云采纳,获得10
25秒前
25秒前
K3完成签到,获得积分10
25秒前
26秒前
简柠完成签到,获得积分10
28秒前
MM完成签到,获得积分10
29秒前
cyanpomelo应助万物更始采纳,获得10
29秒前
30秒前
kkdkg发布了新的文献求助10
30秒前
明亮无颜发布了新的文献求助200
33秒前
于是完成签到,获得积分10
33秒前
Joaquin完成签到 ,获得积分10
35秒前
灰灰喵完成签到 ,获得积分10
37秒前
阿斯顿撒大学完成签到,获得积分10
37秒前
wh应助田俊采纳,获得10
38秒前
龍fei完成签到,获得积分10
38秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728