Parkinson’s Disease Recognition Using SPECT Image and Interpretable AI: A Tutorial

人工智能 反向传播 掷骰子 计算机科学 模式识别(心理学) Sørensen–骰子系数 深度学习 口译(哲学) 机器学习 人工神经网络 图像(数学) 图像分割 数学 统计 程序设计语言
作者
Theerasarn Pianpanit,Sermkiat Lolak,Phattarapong Sawangjai,Thapanun Sudhawiyangkul,Theerawit Wilaiprasitporn
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (20): 22304-22316 被引量:24
标识
DOI:10.1109/jsen.2021.3077949
摘要

In the past few years, there are several researches on Parkinson's disease (PD) recognition using single-photon emission computed tomography (SPECT) images with deep learning (DL) approach. However, the DL model's complexity usually results in difficultmodel interpretation when used in clinical. Even though there are multiple interpretation methods available for the DL model, there is no evidence of which method is suitable for PD recognition application. This tutorial aims to demonstrate the procedure to choose a suitable interpretationmethod for the PD recogni-tion model. We exhibit four DCNN architectures as an example and introduce six well-known interpretationmethods. Finally, we propose an evaluation method to measure the interpretation performance and a method to use the interpreted feedback for assisting in model selection. The evaluation demonstrates that the guided backpropagation and SHAP interpretation methods are suitable for PD recognition methods in different aspects. Guided backpropagation has the best ability to show fine-grained importance, which is proven by the highest Dice coefficient and lowest mean square error. On the other hand, SHAP can generate a better quality heatmap at the uptake depletion location, which outperforms other methods in discriminating the difference between PD and NC subjects. Shortly, the introduced interpretationmethods can contribute to not only the PD recognition application but also to sensor data processing in an AI Era (interpretable-AI) as feedback in constructing well-suited deep learning architectures for specific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_伍南风完成签到,获得积分10
3秒前
4秒前
西多士颗粒完成签到,获得积分10
4秒前
yin发布了新的文献求助10
6秒前
jue发布了新的文献求助10
7秒前
汉堡包应助研友_伍南风采纳,获得10
8秒前
zou完成签到,获得积分20
9秒前
yjsshr发布了新的文献求助10
9秒前
10秒前
繁荣的之柔完成签到,获得积分10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
yjsshr完成签到,获得积分10
14秒前
Akim应助MING采纳,获得10
16秒前
17秒前
17秒前
李白发布了新的文献求助10
18秒前
微笑的迪妮莎应助无敌W采纳,获得10
18秒前
mary发布了新的文献求助20
18秒前
suodeheng发布了新的文献求助10
19秒前
GlockieZhao完成签到,获得积分10
19秒前
莫逆发布了新的文献求助10
20秒前
22秒前
Jrssion发布了新的文献求助10
23秒前
23秒前
阿司匹林发布了新的文献求助10
24秒前
25秒前
27秒前
勾勾1991发布了新的文献求助10
29秒前
健忘雁风发布了新的文献求助10
31秒前
34秒前
35秒前
35秒前
GGGirafe发布了新的文献求助10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Asian badgers—the same, only different: how diversity among badger societies informs socio-ecological theory and challenges conservation 500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787835
求助须知:如何正确求助?哪些是违规求助? 3333409
关于积分的说明 10261821
捐赠科研通 3049168
什么是DOI,文献DOI怎么找? 1673446
邀请新用户注册赠送积分活动 801928
科研通“疑难数据库(出版商)”最低求助积分说明 760419