Percolation on complex networks: Theory and application

渗流理论 网络科学 复杂网络 渗透(认知心理学) 网络理论 连续介质渗流理论 统计物理学 随机图 相互依存的网络 理论计算机科学 计算机科学 物理 渗流临界指数 拓扑(电路) 缩放比例 临界指数 数学 图形 统计 组合数学 万维网 生物 神经科学 几何学
作者
Ming Li,Run-Ran Liu,Linyuan Lü,Mao-Bin Hu,Shuqi Xu,Yi‐Cheng Zhang
出处
期刊:Physics Reports [Elsevier BV]
卷期号:907: 1-68 被引量:41
标识
DOI:10.1016/j.physrep.2020.12.003
摘要

In the last two decades, network science has blossomed and influenced various fields, such as statistical physics, computer science, biology and sociology, from the perspective of the heterogeneous interaction patterns of components composing the complex systems. As a paradigm for random and semi-random connectivity, percolation model plays a key role in the development of network science and its applications. On the one hand, the concepts and analytical methods, such as the emergence of the giant cluster, the finite-size scaling, and the mean-field method, which are intimately related to the percolation theory, are employed to quantify and solve some core problems of networks. On the other hand, the insights into the percolation theory also facilitate the understanding of networked systems, such as robustness, epidemic spreading, vital node identification, and community detection. Meanwhile, network science also brings some new issues to the percolation theory itself, such as percolation of strong heterogeneous systems, topological transition of networks beyond pairwise interactions, and emergence of a giant cluster with mutual connections. So far, the percolation theory has already percolated into the researches of structure analysis and dynamic modeling in network science. Understanding the percolation theory should help the study of many fields in network science, including the still opening questions in the frontiers of networks, such as networks beyond pairwise interactions, temporal networks, and network of networks. The intention of this paper is to offer an overview of these applications, as well as the basic theory of percolation transition on network systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
之组长了完成签到 ,获得积分10
1秒前
共享精神应助zikncy采纳,获得10
1秒前
1秒前
一叶扁舟发布了新的文献求助10
2秒前
高贵路灯完成签到 ,获得积分10
2秒前
乐乐应助大喜采纳,获得50
3秒前
李健的粉丝团团长应助小t采纳,获得10
4秒前
liuliumei完成签到,获得积分10
5秒前
星辰大海应助青藤采纳,获得10
7秒前
Pomelo发布了新的文献求助10
7秒前
江鸿惊发布了新的文献求助10
7秒前
8秒前
8秒前
张张发布了新的文献求助10
10秒前
在水一方应助XX采纳,获得10
10秒前
xiaoxiao完成签到,获得积分10
10秒前
执着的草丛完成签到,获得积分10
12秒前
17关注了科研通微信公众号
13秒前
无花果应助大乐采纳,获得10
13秒前
冰雪完成签到 ,获得积分20
13秒前
Ava应助chen采纳,获得10
13秒前
14秒前
wanci应助Raojas采纳,获得10
14秒前
小米粥完成签到,获得积分10
14秒前
www完成签到 ,获得积分10
14秒前
IRer79发布了新的文献求助10
14秒前
洛洛完成签到,获得积分10
14秒前
我是老大应助珊珊采纳,获得10
15秒前
yujieshi完成签到 ,获得积分10
16秒前
高贵路灯发布了新的文献求助10
16秒前
16秒前
sjj发布了新的文献求助10
16秒前
快乐难敌发布了新的文献求助10
16秒前
塔莉娅完成签到,获得积分10
16秒前
关关完成签到,获得积分10
16秒前
17秒前
一叶扁舟发布了新的文献求助10
17秒前
ggggg完成签到 ,获得积分10
18秒前
yhr完成签到 ,获得积分10
18秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813863
求助须知:如何正确求助?哪些是违规求助? 3358242
关于积分的说明 10393295
捐赠科研通 3075577
什么是DOI,文献DOI怎么找? 1689423
邀请新用户注册赠送积分活动 812845
科研通“疑难数据库(出版商)”最低求助积分说明 767387