Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel

材料科学 过程(计算) 粉末冶金 物理冶金学 合金 体积分数 分类器(UML) 计算机科学 机械工程 机器学习 工艺工程 人工智能 冶金 复合材料 微观结构 工程类 操作系统
作者
Chunguang Shen,Chenchong Wang,Xiaolu Wei,Yong Li,Sybrand van der Zwaag,Wei Xu
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:179: 201-214 被引量:179
标识
DOI:10.1016/j.actamat.2019.08.033
摘要

With the development of the materials genome philosophy and data mining methodologies, machine learning (ML) has been widely applied for discovering new materials in various systems including high-end steels with improved performance. Although recently, some attempts have been made to incorporate physical features in the ML process, its effects have not been demonstrated and systematically analysed nor experimentally validated with prototype alloys. To address this issue, a physical metallurgy (PM) -guided ML model was developed, wherein intermediate parameters were generated based on original inputs and PM principles, e.g., equilibrium volume fraction (Vf) and driving force (Df) for precipitation, and these were added to the original dataset vectors as extra dimensions to participate in and guide the ML process. As a result, the ML process becomes more robust when dealing with small datasets by improving the data quality and enriching data information. Therefore, a new material design method is proposed combining PM-guided ML regression, ML classifier and a genetic algorithm (GA). The model was successfully applied to the design of advanced ultrahigh-strength stainless steels using only a small database extracted from the literature. The proposed prototype alloy with a leaner chemistry but better mechanical properties has been produced experimentally and an excellent agreement was obtained for the predicted optimal parameter settings and the final properties. In addition, the present work also clearly demonstrated that implementation of PM parameters can improve the design accuracy and efficiency by eliminating intermediate solutions not obeying PM principles in the ML process. Furthermore, various important factors influencing the generalizability of the ML model are discussed in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定的凝云完成签到 ,获得积分10
刚刚
xchen完成签到,获得积分20
刚刚
guo发布了新的文献求助10
刚刚
ding应助沉静的幻翠采纳,获得30
1秒前
柯南完成签到,获得积分10
2秒前
巫马沛春完成签到,获得积分10
3秒前
JamesPei应助hsialy采纳,获得10
3秒前
一一发布了新的文献求助10
3秒前
3秒前
sxc发布了新的文献求助10
4秒前
AnnaYang发布了新的文献求助10
5秒前
CWNU_HAN应助武淑晴采纳,获得30
5秒前
Akim应助bobo采纳,获得10
6秒前
6秒前
肖雪依完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
NADPH发布了新的文献求助10
8秒前
9秒前
9秒前
DDDD发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
xiaolu发布了新的文献求助10
15秒前
15秒前
所所应助安详的白山采纳,获得10
15秒前
冷傲的醉薇完成签到,获得积分10
15秒前
共享精神应助强劲采纳,获得20
15秒前
17秒前
17秒前
QIQI发布了新的文献求助10
17秒前
Marilyn完成签到,获得积分10
17秒前
明亮的冰颜完成签到,获得积分10
18秒前
bobo发布了新的文献求助10
18秒前
深空发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241150
求助须知:如何正确求助?哪些是违规求助? 3774831
关于积分的说明 11854333
捐赠科研通 3429785
什么是DOI,文献DOI怎么找? 1882581
邀请新用户注册赠送积分活动 934419
科研通“疑难数据库(出版商)”最低求助积分说明 841000