厌氧消化
废弃物
环境科学
人工神经网络
生化工程
计算机科学
废物管理
城市固体废物
工程类
废物处理
机器学习
化学
有机化学
甲烷
作者
Haonan Guo,Shubiao Wu,Yingjie Tian,Jun Zhang,Hongtao Liu
标识
DOI:10.1016/j.biortech.2020.124114
摘要
Conventional treatment and recycling methods of organic solid waste contain inherent flaws, such as low efficiency, low accuracy, high cost, and potential environmental risks. In the past decade, machine learning has gradually attracted increasing attention in solving the complex problems of organic solid waste treatment. Although significant research has been carried out, there is a lack of a systematic review of the research findings in this field. This study sorts the research studies published between 2003 and 2020, summarizes the specific application fields, characteristics, and suitability of different machine learning models, and discusses the relevant application limitations and future prospects. It can be concluded that studies mostly focused on municipal solid waste management, followed by anaerobic digestion, thermal treatment, composting, and landfill. The most widely used model is the artificial neural network, which has been successfully applied to various complicated non-linear organic solid waste related problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI