Short term wind energy resource prediction using WRF model for a location in western part of Turkey

天气研究与预报模式 风速 风力发电 气象学 环境科学 风廓线幂律 最大持续风 风向 风电预测 功率(物理) 电力系统 工程类 风梯度 地理 物理 电气工程 量子力学
作者
Elçin Tan,Şükran Sibel Menteş,Emel ÜNAL,Yurdanur Ünal,Bahtiyar Efe,Burak Barutçu,Barış Önol,Hayat Topçu,Selahattin İncecik
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:13 (1) 被引量:16
标识
DOI:10.1063/5.0026391
摘要

Wind energy is a rapidly growing industry in Turkey. Wind power potential studies revealed that the most promising region for electricity generation is the western part of Turkey. Wind speed forecasting is necessary for power systems because of the intermittent nature of wind. Thus, accurate forecasting of wind power is recognized as a major contribution to reliable wind power integration. This paper assesses the performance of the weather research forecasting (WRF) model for wind speed and wind direction predictions up to 72 h ahead. The wind speeds and wind directions are evaluated based on the mean absolute error (MAE). Evaluations were also performed seasonally. Moreover, in order to improve the WRF simulations, a multi-input–single output artificial neural network (ANN) approach is applied to both wind speeds of the WRF model and wind power estimates, which are estimated from the wind speeds of the WRF model by using a power curve for the Soma wind power plant. Traditional error metrics were used for validations using wind tower mast data installed nearby the wind farm. The results from up to 72 h forecast horizon show that the WRF model slightly overpredicts the wind speeds. Wind speed predictions by the WRF model are found highly depending on the season, location, and wind direction. The model is also able to reproduce wind directions except for low wind speeds. Large MAEs are found for the winds less than 5 m/s. The performance of the WRF model for wind power prediction decreases with the increasing runtime. Root mean square error and normalized root mean square error (nRMSE) in wind powers range in between 123–261 kW and 13%–32% without performing the ANN approach, respectively. The improvement of the ANN depends on the forecast horizon, season, and location of turbine groups, as well as its application on either the wind speed outputs of the WRF model or wind power estimations. The ANN significantly improves the WRF at large forecast horizons for wind power estimations, for which it gives better results in the summer and reaches 29% improvement for summer on average for nRMSE. On the other hand, ANN adjusts the wind speed outputs of the model better than that of wind power estimations. For instance, the nRMSE is approximately 13% for 24 h winter wind speed simulations of the WRF for the turbine groups G1 and G4, after ANN adjustment. The ANN improves the results better for turbine group 1, because of less complexity of this group in the direction of prevailing wind. The evaluation of the ANN suggests that the approach can be used for improving the performance of the wind power forecast for this power plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cryo完成签到,获得积分10
刚刚
97_完成签到,获得积分10
刚刚
1秒前
1秒前
wr0112发布了新的文献求助10
1秒前
平淡的蜻蜓完成签到,获得积分10
2秒前
2秒前
丘比特应助无敌DE心采纳,获得10
3秒前
nail完成签到,获得积分10
4秒前
Cryo发布了新的文献求助10
5秒前
5秒前
小黑猫跑酷完成签到 ,获得积分10
6秒前
6秒前
pyh01完成签到 ,获得积分10
6秒前
马克叔叔发布了新的文献求助10
6秒前
CiCi完成签到,获得积分10
7秒前
WIL发布了新的文献求助10
7秒前
arizaki7发布了新的文献求助10
7秒前
7秒前
8秒前
小唐完成签到,获得积分10
8秒前
Criminology34应助Ally采纳,获得10
8秒前
csz完成签到,获得积分10
9秒前
文静新烟应助最棒哒采纳,获得10
9秒前
10秒前
ZHY发布了新的文献求助50
10秒前
科研通AI2S应助baobeikk采纳,获得10
11秒前
Ava应助orange采纳,获得10
11秒前
11秒前
11秒前
张7发布了新的文献求助10
12秒前
12秒前
科研通AI6应助体贴半仙采纳,获得10
13秒前
陆文灏完成签到,获得积分10
13秒前
小二郎应助有魅力的如柏采纳,获得10
14秒前
yinying发布了新的文献求助10
14秒前
16秒前
一一完成签到,获得积分10
16秒前
吴妮妮发布了新的文献求助10
16秒前
木木林发布了新的文献求助10
17秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338701
求助须知:如何正确求助?哪些是违规求助? 4475775
关于积分的说明 13929452
捐赠科研通 4371050
什么是DOI,文献DOI怎么找? 2401660
邀请新用户注册赠送积分活动 1394683
关于科研通互助平台的介绍 1366468