亮度
消色差透镜
色阶
显著性(神经科学)
小细胞细胞
色度
对比度(视觉)
心理学
彩色视觉
人工智能
计算机视觉
计算机科学
神经科学
光学
物理
中枢神经系统
作者
Amanda Hardman,Thomas Töllner,Jasna Martinović
出处
期刊:Journal of Vision
[Association for Research in Vision and Ophthalmology]
日期:2020-03-20
卷期号:20 (3): 5-5
被引量:3
摘要
Previous electroencephalographic research on attentional salience did not fully capture the complexities of low-level vision, which relies on both cone-opponent chromatic and cone-additive luminance mechanisms. We systematically varied color and luminance contrast using a visual search task for a higher contrast target to assess the degree to which the salience-computing attentional mechanisms are constrained by low-level visual inputs. In our first experiment, stimuli were defined by contrast that isolated chromatic or luminance mechanisms. In our second experiment, targets were defined by contrasts that isolated or combined achromatic and chromatic mechanisms. In both experiments, event-related potential waveforms contralateral and ipsilateral to the target were qualitatively different for chromatic- compared to luminance-defined stimuli. The same was true of the difference waves computed from these waveforms, with isoluminant stimuli eliciting a mid-latency posterior contralateral negativity (PCN) component and achromatic stimuli eliciting a complex of multiple components, including an early posterior contralateral positivity followed by a late-latency PCN. Combining color with luminance resulted in waveform and difference wave patterns equivalent to those of achromatic stimuli. When large levels of chromaticity contrast were added to targets with small levels of luminance contrast, PCN latency was speeded. In conclusion, the mechanisms underlying attentional salience are constrained by the low-level inputs they receive. Furthermore, speeded PCN latencies for stimuli that combine color and luminance signals compared to stimuli that contain luminance alone demonstrate that color and luminance channels are integrated during pre-attentive visual processing, before top-down allocation of attention is triggered.
科研通智能强力驱动
Strongly Powered by AbleSci AI