Applications of machine learning to machine fault diagnosis: A review and roadmap

桥(图论) 计算机科学 人工智能 机器学习 工程类 医学 内科学
作者
Yaguo Lei,Bin Yang,Xinwei Jiang,Feng Jia,Naipeng Li,Asoke K. Nandi
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:138: 106587-106587 被引量:2083
标识
DOI:10.1016/j.ymssp.2019.106587
摘要

Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to machine fault diagnosis. This is a promising way to release the contribution from human labor and automatically recognize the health states of machines, thus it has attracted much attention in the last two or three decades. Although IFD has achieved a considerable number of successes, a review still leaves a blank space to systematically cover the development of IFD from the cradle to the bloom, and rarely provides potential guidelines for the future development. To bridge the gap, this article presents a review and roadmap to systematically cover the development of IFD following the progress of machine learning theories and offer a future perspective. In the past, traditional machine learning theories began to weak the contribution of human labor and brought the era of artificial intelligence to machine fault diagnosis. Over the recent years, the advent of deep learning theories has reformed IFD in further releasing the artificial assistance since the 2010s, which encourages to construct an end-to-end diagnosis procedure. It means to directly bridge the relationship between the increasingly-grown monitoring data and the health states of machines. In the future, transfer learning theories attempt to use the diagnosis knowledge from one or multiple diagnosis tasks to other related ones, which prospectively overcomes the obstacles in applications of IFD to engineering scenarios. Finally, the roadmap of IFD is pictured to show potential research trends when combined with the challenges in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实敏发布了新的文献求助10
1秒前
自觉的书蝶完成签到,获得积分10
1秒前
SmileLin完成签到,获得积分20
3秒前
Ukiss发布了新的文献求助10
3秒前
我是老大应助泡泡汽水采纳,获得10
4秒前
5秒前
Kevin Huang完成签到,获得积分10
7秒前
SmileLin关注了科研通微信公众号
11秒前
bkagyin应助干冷安采纳,获得10
12秒前
小草完成签到,获得积分10
12秒前
岁月旧曾谙完成签到,获得积分10
13秒前
kassidy完成签到,获得积分10
16秒前
kongkai发布了新的文献求助10
16秒前
May想吃烤肉完成签到,获得积分10
17秒前
刘春言发布了新的文献求助30
23秒前
杨志坚完成签到,获得积分10
24秒前
桃子发布了新的文献求助10
24秒前
科目三应助畅快的饼干采纳,获得10
25秒前
平常的半凡完成签到,获得积分10
26秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
xzy998应助科研通管家采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
BINGBING1230应助科研通管家采纳,获得50
29秒前
七月流火应助科研通管家采纳,获得150
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
29秒前
在水一方应助科研通管家采纳,获得10
30秒前
30秒前
今后应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
赖锦标给赖锦标的求助进行了留言
33秒前
刘fei完成签到,获得积分20
35秒前
36秒前
歇菜完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4313059
求助须知:如何正确求助?哪些是违规求助? 3833090
关于积分的说明 11991974
捐赠科研通 3473114
什么是DOI,文献DOI怎么找? 1904511
邀请新用户注册赠送积分活动 951322
科研通“疑难数据库(出版商)”最低求助积分说明 852954